Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Oct 16;112(41):13038-50.
doi: 10.1021/jp800675w. Epub 2008 Sep 19.

Screening and separation of charges in microscale devices: complete planar solution of the Poisson-Boltzmann equation

Affiliations

Screening and separation of charges in microscale devices: complete planar solution of the Poisson-Boltzmann equation

Alwin R M Verschueren et al. J Phys Chem B. .

Abstract

The Poisson-Boltzmann (PB) equation is widely used to calculate the interaction between electric potential and the distribution of charged species. In the case of a symmetrical electrolyte in planar geometry, the Gouy-Chapman (GC) solution is generally presented as the analytical solution of the PB equation. However, we demonstrate here that this GC solution assumes the presence of a bulk region with zero electric field, which is not justified in microdevices. In order to extend the range of validity, we obtain here the complete numerical solution of the planar PB equation, supported with analytical approximations. For low applied voltages, it agrees with the GC solution. Here, the electric double layers fully absorb the applied voltage such that a region appears where the electric field is screened. For higher voltages (of order 1 V in microdevices), the solution of the PB equation shows a dramatically different behavior, in that the double layers can no longer absorb the complete applied voltage. Instead, a finite field remains throughout the device that leads to complete separation of the charged species. In this higher voltage regime, the double layer characteristics are no longer described by the usual Debye parameter kappa, and the ion concentration at the electrodes is intrinsically bound (even without assuming steric interactions). In addition, we have performed measurements of the electrode polarization current on a nonaqueous model electrolyte inside a microdevice. The experimental results are fully consistent with our calculations, for the complete concentration and voltage range of interest.

PubMed Disclaimer

LinkOut - more resources