Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov 5;26(47):5952-6.
doi: 10.1016/j.vaccine.2008.08.059. Epub 2008 Sep 16.

Epidemiology of pathogenic Neisseria meningitidis serogroup B serosubtypes in Malta: implications for introducing PorA based vaccines

Affiliations

Epidemiology of pathogenic Neisseria meningitidis serogroup B serosubtypes in Malta: implications for introducing PorA based vaccines

David Pace et al. Vaccine. .

Abstract

Objective: To describe the epidemiology of the serosubtypes of Neisseria meningitidis serogroup B (MenB) in the most densely populated area in Europe and to review the MenB Porin A (PorA) based outer membrane vesicle (OMV) vaccines that could provide the broadest protection.

Study design and setting: Active surveillance of invasive meningococcal disease in a population of 400,000 inhabitants in Malta from 1999 to 2006. Serogroup B isolates were serosubtyped and analysed by age and year. The suitability of OMV vaccines was then assessed.

Results: Laboratory confirmation of invasive meningococcal disease was obtained in 48% (79/163) of notified cases. Serogroup B caused the majority of invasive meningococcal disease (76%, 60/79) with the greatest disease burden occurring in 0-14-year-old children (73%, 44/60). MenC caused 14% (11/79) of cases. The most prevalent MenB serotype:serosubtype combination was B:4:P1.19,15 which constituted 59% (34/58) of all phenotypeable MenB isolates. The PorA epitopes P1.15 and P1.19, detected in 74% (43/58) of isolates, were significantly more prevalent than serosubtypes with other PorA epitopes (chi(2): 7.18, P<0.01).

Conclusion: An assessment of the usefulness of a MenB OMV vaccine in Malta requires further research. The wild-type OMV vaccine developed by the Finlay Institute (FI) in Cuba could potentially be used to control an outbreak with a MenB P1.19,15 clone. A multivalent OMV vaccine would however be needed for broader protection against the endemic heterogenous MenB strains. A serogroup B vaccine incorporating more conserved proteins than PorA would be more suitable for comprehensive control of meningococcal B disease.

PubMed Disclaimer

MeSH terms

LinkOut - more resources