Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;24(7):607-14.
doi: 10.1016/0021-9290(91)90293-v.

A model of the alar ligaments of the upper cervical spine in axial rotation

Affiliations
Free article

A model of the alar ligaments of the upper cervical spine in axial rotation

J J Crisco 3rd et al. J Biomech. 1991.
Free article

Abstract

Although there are seven vertebrae in the human cervical spine, over 50% of the total axial rotation occurs between the first and second vertebrae, at the atlanto-axial joint. Such motion is possible because of the lack of an intervertebral disc and the shape of the articular facets. The limitation of axial rotation, essential because the spinal cord and vertebral arteries cross this joint, is achieved with ligamentous structures, of which the left and right alar ligaments are primary. When one of the alar ligaments was cut in previous tests of human cadaveric spine (n = 10), the axial rotation to both sides significantly increased. This result does not agree with the long-held hypothesis that axial rotation is limited only by the alar on the side opposite rotation. The purpose of this work was to develop a model of the alar ligaments in axial rotation that is consistent with recent experimental observations. This model predicts that both alars must be intact to limit axial rotation; if one alar is injured, the normal mechanism becomes nonfunctional. The model also predicts the observation that a significant percentage of rotation at the atlanto-axial joint occurs freely, without ligamentous resistance. A physical and a mathematical description of the model is presented. Cadaveric experimental data are demonstrated to support the model.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources