Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;49(11):1711-22.
doi: 10.1093/pcp/pcn144. Epub 2008 Sep 18.

Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions

Affiliations

Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions

Francisco J Corpas et al. Plant Cell Physiol. 2008 Nov.

Abstract

Nitric oxide (*NO) is a key signaling molecule in different physiological processes of animals and plants. However, little is known about the metabolism of endogenous *NO and other reactive nitrogen species (RNS) in plants under abiotic stress conditions. Using pea plants exposed to six different abiotic stress conditions (high light intensity, low and high temperature, continuous light, continuous dark and mechanical wounding), several key components of the metabolism of RNS including the content of *NO, S-nitrosothiols (RSNOs) and nitrite plus nitrate, the enzyme activities of l-arginine-dependent nitric oxide synthase (NOS) and S-nitrosogluthathione reductase (GSNOR), and the profile of protein tyrosine nitration (NO(2)-Tyr) were analyzed in leaves. Low temperature was the stress that produced the highest increase of NOS and GSNOR activities, and this was accompanied by an increase in the content of total *NO and S-nitrosothiols, and an intensification of the immunoreactivity with an antibody against NO(2)-Tyr. Mechanical wounding, high temperature and light also had a clear activating effect on the different indicators of RNS metabolism in pea plants. However, the total content of nitrite and nitrate in leaves was not affected by any of these stresses. Considering that protein tyrosine nitration is a potential marker of nitrosative stress, the results obtained suggest that low and high temperature, continuous light and high light intensity are abiotic stress conditions that can induce nitrosative stress in pea plants.

PubMed Disclaimer

Publication types

LinkOut - more resources