Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Oct 1;181(7):4523-33.
doi: 10.4049/jimmunol.181.7.4523.

Promoter analysis reveals critical roles for SMAD-3 and ATF-2 in expression of IL-23 p19 in macrophages

Affiliations
Comparative Study

Promoter analysis reveals critical roles for SMAD-3 and ATF-2 in expression of IL-23 p19 in macrophages

Fahd Al-Salleeh et al. J Immunol. .

Abstract

IL-23 p19/p40, produced by macrophages and dendritic cells, is critical for development of Th17 in several autoimmune diseases. In this study, bone marrow-derived (BMM) and splenic macrophages (SPM) from SJL/J mice, susceptible to autoimmune demyelinating disease following Theiler's virus (TMEV) infection, expressed IL-23 in response to TMEV. We identified potential binding sites for IFN response factor (IRF)-3 (nt -734 to -731), Sma- and Mad-related protein (SMAD)-3 (nt -584 to -581), activating transcription factor (ATF)-2 (nt -571 to -568), IRF-7 (nt -533 to-525), and NF-kappaB (nt -215 to -209) in the murine p19 promoter. The p19(prom) in the pGL3 promoter-reporter vector responded to TMEV or poly(I:C), a TLR3 agonist in the RAW264.7 macrophage cell line. Deletions upstream from the IRF-3 site and mutations at the IRF-3, SMAD-3, ATF-2, or NF-kappaB, but not the IRF-7, sites significantly reduced promoter activity. ATF-2 or SMAD-3, but not IRF-3, short-hairpin RNA reduced p19 promoter activity and protein expression in RAW264.7 cells responding to TMEV. Chromosomal DNA immunoprecipitation assays revealed that SMAD-3 and ATF-2 bind to the endogenous p19 promoter in RAW264.7 cells and SJL/J SPM following challenge with TMEV. TGF-beta1, which activates SMAD-3, was induced in RAW264.7 cells, BMM, and SPM by TMEV. Neutralizing Ab to TGF-beta1 eliminated TMEV-induced IL-23 production and SMAD-3 activation in RAW264.7 cells, BMM, and SPM. Activation of ATF-2 was JNK, but not p38 or ERK MAPK dependent. Inhibition of the JNK, but also the ERK MAPK pathways decreased expression of p19. These results suggest that ATF-2 and SMAD-3 are transcription factors, which are, in addition to NF-kappaB, essential for IL-23 p19 expression.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources