Iron(III) uptake and release by chrysobactin, a siderophore of the phytophatogenic bacterium Erwinia chrysanthemi
- PMID: 18803373
- DOI: 10.1021/ic801143e
Iron(III) uptake and release by chrysobactin, a siderophore of the phytophatogenic bacterium Erwinia chrysanthemi
Abstract
The plant pathogenic enterobacterium Erwinia chrysanthemi causes important soft-rot disease on a wide range of plants including vegetables and ornamentals of economic importance. It produces a major mono(catecholate) siderophore, chrysobactin (alpha-N-(2,3-dihydroxybenzoyl)-D-lysyl-L-serine). To unravel the role of chrysobactin in the virulence of E. chrysanthemi, its iron(III) coordination properties were thus investigated in aqueous solutions using electrospray ionization mass spectrometric, potentiometric, and spectrophotometric methods. Moreover, kinetic experiments allowed us to determine the uptake and release mechanisms. The formation mechanism of the 1:1 complex reveals a key role of the terminal carboxylic group of chrysobactin in the binding of either FeOH(2+) or Fe2(OH)2(4+). The proton-driven dissociation of the ferric tris-, bis-, and mono(chrysobactin) complexes was also studied. For these three ferric complexes, a single protonation triggers the release of the bound chrysobactin molecule. Interestingly, the dissociation of the last ligand proceeded via the formation of an intermediate for which a salicylate-type mode of bonding was proposed.
Similar articles
-
Ferric iron uptake in Erwinia chrysanthemi mediated by chrysobactin and related catechol-type compounds.J Bacteriol. 1992 Jul;174(14):4783-9. doi: 10.1128/jb.174.14.4783-4789.1992. J Bacteriol. 1992. PMID: 1624465 Free PMC article.
-
Iron(III) complexes of chrysobactin, the siderophore of Erwinia chrysanthemi.Biometals. 1992 Spring;5(1):29-36. doi: 10.1007/BF01079695. Biometals. 1992. PMID: 1392469
-
Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection.Mol Microbiol. 2005 Jan;55(1):261-75. doi: 10.1111/j.1365-2958.2004.04383.x. Mol Microbiol. 2005. PMID: 15612933
-
The role of iron in plant host-pathogen interactions.Trends Microbiol. 1996 Jun;4(6):232-7. doi: 10.1016/0966-842X(96)10038-X. Trends Microbiol. 1996. PMID: 8795159 Review.
-
Ferritins, bacterial virulence and plant defence.Biometals. 2007 Jun;20(3-4):347-53. doi: 10.1007/s10534-006-9069-0. Epub 2007 Jan 10. Biometals. 2007. PMID: 17216356 Review.
Cited by
-
Siderophores and mussel foot proteins: the role of catechol, cations, and metal coordination in surface adhesion.J Biol Inorg Chem. 2017 Jul;22(5):739-749. doi: 10.1007/s00775-017-1451-6. Epub 2017 Mar 31. J Biol Inorg Chem. 2017. PMID: 28364222 Review.
-
Microbial siderophores exert a subtle role in Arabidopsis during infection by manipulating the immune response and the iron status.Plant Physiol. 2009 Aug;150(4):1687-96. doi: 10.1104/pp.109.138636. Epub 2009 May 15. Plant Physiol. 2009. PMID: 19448037 Free PMC article.
-
Electrochemical and Solution Structural Characterization of Fe(III) Azotochelin Complexes: Examining the Coordination Behavior of a Tetradentate Siderophore.Inorg Chem. 2022 Dec 5;61(48):19172-19182. doi: 10.1021/acs.inorgchem.2c02777. Epub 2022 Oct 17. Inorg Chem. 2022. PMID: 36251475 Free PMC article.
-
Chrysobactin siderophores produced by Dickeya chrysanthemi EC16.J Nat Prod. 2011 May 27;74(5):1207-12. doi: 10.1021/np200126z. Epub 2011 May 5. J Nat Prod. 2011. PMID: 21545171 Free PMC article.
-
Genomic Characterisation of Mushroom Pathogenic Pseudomonads and Their Interaction with Bacteriophages.Viruses. 2020 Nov 10;12(11):1286. doi: 10.3390/v12111286. Viruses. 2020. PMID: 33182769 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous