Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Oct 15;130(41):13790-803.
doi: 10.1021/ja805044x. Epub 2008 Sep 20.

Expeditious chemoenzymatic synthesis of homogeneous N-glycoproteins carrying defined oligosaccharide ligands

Affiliations

Expeditious chemoenzymatic synthesis of homogeneous N-glycoproteins carrying defined oligosaccharide ligands

Hirofumi Ochiai et al. J Am Chem Soc. .

Abstract

An efficient chemoenzymatic method for the construction of homogeneous N-glycoproteins was described that explores the transglycosylation activity of the endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) with synthetic sugar oxazolines as the donor substrates. First, an array of large oligosaccharide oxazolines were synthesized and evaluated as substrates for the Endo-A-catalyzed transglycosylation by use of ribonuclease B as a model system. The experimental results showed that Endo-A could tolerate modifications at the outer mannose residues of the Man3GlcNAc-oxazoline core, thus allowing introduction of large oligosaccharide ligands into a protein and meanwhile preserving the natural, core N-pentasaccharide (Man3GlcNAc2) structure in the resulting glycoprotein upon transglycosylation. In addition to ligands for galectins and mannose-binding lectins, azido functionality could be readily introduced at the N-pentasaccharide (Man3GlcNAc2) core by use of azido-containing Man3GlcNAc oxazoline as the donor substrate. The introduction of azido functionality permits further site-specific modifications of the resulting glycoproteins, as demonstrated by the successful attachment of two copies of alphaGal epitopes to ribonuclease B. This study reveals a broad substrate specificity of Endo-A for transglycosylation, and the chemoenzymatic method described here points to a new avenue for quick access to various homogeneous N-glycoproteins for structure-activity relationship studies and for biomedical applications.

PubMed Disclaimer

Figures

Figure 1
Figure 1
A chemoenzymatic strategy for N-glycoprotein synthesis
Figure 2
Figure 2
Synthetic oligosaccharide oxazolines
Figure 3
Figure 3
The ESI mass spectra of the synthetic glycoproteins. A, glycoprotein 36; B, glycoprotein 37; and C, glycoprotein 38. Peaks are labeled according to the corresponding charge states.
Figure 4
Figure 4
SDA-PAGE and ESI-MS analysis of the αGal-incorporated glycoprotein product (42) generated by “Click” chemistry. A, Coomassie blue-stained SDS-PAGE gel (Lane M is protein marker with sizes on the left; Lane 1 is the starting material, glycoprotein 38, and lane 2 is the purified product, glycoprotein 42); B, The ESI mass spectrum of glycoprotein 42. Charge states are labeled.
Figure 5
Figure 5
SPR sensorgrams of the binding between respective synthetic glycoproteins and immobilized lectin or human serum antibody. A, binding to immobilized ConA; B, binding to immobilized PNA; and C, binding to immobilized whole IgG-type antibodies from human serum. For comparison, respective glycoprotein or ribonuclease A was injected onto the sensor chip surface at a concentration of 1.0 µM.
Scheme 1
Scheme 1
Synthesis of oligosaccharide oxazoline 3 Reagents and conditions: (a) BSP, TTBP, Tf2O, CH2Cl2, 67%; (b) TFA, CH2Cl2, 85%; (c) TMSOTf, CH2Cl2, 79%; (d) AcSH, 86%; (e) (i) Pd(OH)2-C, H2, MeOH; (ii) Ac2O, pyridine, 90% (2 steps); (f) TMSBr, BF3·OEt2, 2,4,6-collidine, CH2Cl2, 67%; (g) MeONa, MeOH, quant.
Scheme 2
Scheme 2
Synthesis of sugar oxazoline 4 Reagents and conditions: (a) DDQ, CH2Cl2, H2O, 80%; (b) Cu(OTf)2, BH3·THF, THF, 73%; (c) TMSOTf, CH2Cl2, 96%; (d) AcCl, CH2Cl2, MeOH, 90%; (e) TMSOTf, CH2Cl2, 65%; (f) (i) MeONa, CH2Cl2, MeOH; (ii) Ac2O, pyridine; (iii) AcSH, pyridine, CHCl3, 79% (3 steps); (g) (i) Pd(OH)2-C, H2, MeOH; (ii) Ac2O, pyridine, 77% (2 steps); (h) TMSBr, BF3·OEt2, 2,4,6-collidine, CH2ClCH2Cl, 35%; (i) MeONa, MeOH, quant.
Scheme 3
Scheme 3
Synthesis of sugar oxazoline 5 Reagents and conditions: (a) AcSH, pyridine, CHCl3, 85%, (b) AcCl, CH2Cl2, MeOH, 72%; (c) (i) TsCl, pyridine; (ii) NaN3, DMF, 84% (2 steps); (d) MeONa, MeOH, 85%; (e) Pd(OH)2-C, H2, MeOH; (f) TfN3, K2CO3, CuSO4, CH2Cl2, MeOH, H2O; (g) Ac2O, pyridine, 61% (3 steps); (h) TMSBr, BF3·OEt2, 2,4,6-collidine, CH2Cl2, 52%; (i) MeONa, MeOH, quant.
Scheme 4
Scheme 4
enzymatic transglycosylation Reagents and conditions: (a) Endo-A, phosphate buffer (50 mM, pH 6.5), 82%; (b) Endo-A, phosphate buffer (50 mM, pH 6.5), 96%; (c) Endo-A, phosphate buffer (50 mM, pH 6.5), 71%; (d) Endo-A, phosphate buffer (50 mM, pH 6.5), 38%; (e) Endo-A, phosphate buffer (50 mM, pH 6.5), 89%;
Scheme 5
Scheme 5
Synthesis of alkyne-functionalized αGal epitope Reagents and conditions: (a) NaHCO3, MeOH, MeCN, H2O, 79%.
Scheme 6
Scheme 6
Catalytic 1,3-dipolar cycloaddition to introduce αGal epitope Reagents and conditions: (a) Tris buffer (0.1 M, pH 8.0), CuSO4, l-ascorbic acid, bathophenanthrolinedisulfonic acid, 87%.

Similar articles

Cited by

References

    1. Imperiali B, O'Connor SE. Curr. Opin. Chem. Biol. 1999;3:643–649. - PubMed
    2. Sola RJ, Rodriguez-Martinez JA, Griebenow K. Cell Mol Life Sci. 2007;64:2133–2152. - PMC - PubMed
    3. Helenius A, Aebi M. Science. 2001;291:2364–2369. - PubMed
    4. Petrescu AJ, Wormald MR, Dwek RA. Curr. Opin. Struct. Biol. 2006;16:600–607. - PubMed
    1. Varki A. Glycobiology. 1993;3:97–130. - PMC - PubMed
    2. Dwek RA. Chem. Rev. 1996;96:683–720. - PubMed
    3. Dwek RA, Butters TD, Platt FM, Zitzmann N. Nat. Rev. Drug. Discov. 2002;1:65–75. - PubMed
    4. Haltiwanger RS, Lowe JB. Annu. Rev. Biochem. 2004;73:491–537. - PubMed
    5. Dube DH, Bertozzi CR. Nat. Rev. Drug. Discov. 2005;4:477–488. - PubMed
    1. Koeller KM, Wong CH. Nat. Biotechnol. 2000;18:835–841. - PubMed
    2. Seitz O. ChemBioChem. 2000;1:214–246. - PubMed
    3. Herzner H, Reipen T, Schultz M, Kunz H. Chem. Rev. 2000;100:4495–4538. - PubMed
    4. Hang HC, Bertozzi CR. Acc. Chem. Res. 2001;34:727–736. - PubMed
    5. Davis BG. Chem. Rev. 2002;102:579–601. - PubMed
    6. Grogan MJ, Pratt MR, Marcaurelle LA, Bertozzi CR. Annu. Rev. Biochem. 2002;71:593–634. - PubMed
    7. Wong CH. J. Org. Chem. 2005;70:4219–4225. - PubMed
    8. Guo Z, Shao N. Med. Res. Rev. 2005;25:655–678. - PubMed
    9. Pratt MR, Bertozzi CR. Chem. Soc. Rev. 2005;34:58–68. - PubMed
    10. Liu L, Bennett CS, Wong CH. Chem. Commun. 2006:21–33. - PubMed
    11. Buskas T, Ingale S, Boons GJ. Glycobiology. 2006;16:113R–136R. - PubMed
    12. Brik A, Ficht S, Wong CH. Curr. Opin. Chem. Biol. 2006;10:638–644. - PubMed
    13. Bennett CS, Wong CH. Chem. Soc. Rev. 2007;36:1227–1238. - PubMed
    14. Wildt S, Gerngross TU. Nat. Rev. Microbiol. 2005;3:119–128. - PubMed
    15. Yu H, Chen X. Org. Biomol. Chem. 2007;5:865–872. - PMC - PubMed
    1. Warren JD, Miller JS, Keding SJ, Danishefsky SJ. J. Am. Chem. Soc. 2004;126:6576–6578. - PubMed
    2. Macmillan D, Bertozzi CR. Angew. Chem. Int. Ed. 2004;43:1355–1359. - PubMed
    3. Hojo H, Matsumoto Y, Nakahara Y, Ito E, Suzuki Y, Suzuki M, Suzuki A. J. Am. Chem. Soc. 2005;127:13720–13725. - PubMed
    4. Wu B, Chen J, Warren JD, Chen G, Hua Z, Danishefsky SJ. Angew. Chem. Int. Ed. 2006;45:4116–4125. - PubMed
    5. Brik A, Ficht S, Yang YY, Bennett CS, Wong CH. J. Am. Chem. Soc. 2006;128:15026–15033. - PubMed
    6. Payne RJ, Ficht S, Tang S, Brik A, Yang YY, Case DA, Wong CH. J. Am. Chem. Soc. 2007;129:13527–13536. - PubMed
    7. Yamamoto N, Tanabe Y, Okamoto R, Dawson PE, Kajihara Y. J. Am. Chem. Soc. 2008;130:501–510. - PubMed
    1. Witte K, Sears P, Martin R, Wong CH. J. Am. Chem. Soc. 1997;119:2114–2118.

Publication types