Expansion of cytomegalovirus pp65 and IE-1 specific cytotoxic T lymphocytes for cytomegalovirus-specific immunotherapy following allogeneic stem cell transplantation
- PMID: 18804046
- PMCID: PMC2605082
- DOI: 10.1016/j.bbmt.2008.07.014
Expansion of cytomegalovirus pp65 and IE-1 specific cytotoxic T lymphocytes for cytomegalovirus-specific immunotherapy following allogeneic stem cell transplantation
Abstract
Adoptive immunotherapy with antigen-specific cytotoxic T lymphocytes (CTLs) has proven effective in restoring cellular immunity to cytomegalovirus (CMV) and preventing viral reactivation after allogeneic stem cell transplantation (SCT). In an effort to develop a cost-effective, relatively rapid method of CMV CTL expansion, we investigated the use of a pool of overlapping CMV peptides. Because the possibility exists of vaccinating CMV-seronegative donors, and these individuals may have T cell responses predominantly against IE-1, commercially available peptide mixes for pp65 as well as IE-1 were used to stimulate CTLs from 10 seropositive donors. Of these 10 donors, 4 responded to pp65 only, 1 did not respond to either pp65 or IE-1, 4 responded to both pp65 and IE-1, and 1 responded to IE-1 only. These CMV- specific T cells included a mixture of CD4(+) and CD8(+) effectors, and specific cytotoxicity correlated with interferon-gamma production. The costs associated with a 28-day maintenance course of intravenous ganciclovir, cidofovir, foscarnet, and valganciclovir, as well as the preparation and shipping a single dose of CTLs, were determined. The price of generating CMV CTLs using this method was comparable to or less expensive than a 28-day maintenance course for these agents, not including the costs associated with drug administration, supportive care, and the treatment of drug-related complications. Considering the relative ease, low cost, and the fact that CTL administration can result in CMV-specific immune reconstitution, this option should be considered for patients with CMV reactivation or for prophylaxis in patients at high risk for infection.
Figures
References
-
- Salzberger B, Bowden RA, Hackman RC, Davis C, Boeckh M. Neutropenia in allogeneic marrow transplant recipients receiving ganciclovir for prevention of cytomegalovirus disease: risk factors and outcome. Blood. 1997 Sep 15;90(6):2502–2508. - PubMed
-
- Battiwalla M, Wu Y, Bajwa RP, et al. Ganciclovir inhibits lymphocyte proliferation by impairing DNA synthesis. Biol Blood Marrow Transplant. 2007 Jul;13(7):765–770. - PubMed
-
- Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 1992 Jul 10;257(5067):238–241. - PubMed
-
- Einsele H, Roosnek E, Rufer N, et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood. 2002 Jun 1;99(11):3916–3922. - PubMed
-
- Peggs KS, Verfuerth S, Pizzey A, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet. 2003 Oct 25;362(9393):1375–1377. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
