Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008:79:375-92.
doi: 10.1016/S0083-6729(08)00413-5.

Methylenetetrahydrofolate reductase, common polymorphisms, and relation to disease

Affiliations

Methylenetetrahydrofolate reductase, common polymorphisms, and relation to disease

Philip Thomas et al. Vitam Horm. 2008.

Abstract

Folate plays a key role in maintaining genomic stability and providing methyl groups for the formation of dTMP from dUMP which is required for DNA synthesis and repair and for the maintenance of methylation patterns involving cytosine or specific sites such as CpG islands. Under conditions of low folate, dUMP accumulates producing DNA strand breaks and micronucleus formation as a result of excessive uracil incorporation into DNA in place of thymine. Methylenetetrahydrofolate reductase (MTHFR) is an important folate metabolizing enzyme that catalyzes the irreversible conversion of 5,10-methylenetretrahydrofolate, which is the methyl donor for the conversion of dUMP to dTMP, into 5-methyltetrahydrofolate, which is the methyl donor for remethylation of homocysteine to methionine. Certain common polymorphisms within the MTHFR gene (C677T, A1298C) result in reduced enzymatic activity and have been associated with reduced risk for a variety of cancers such as acute lymphocytic leukemia, lung and colorectal cancer. These common polymorphisms are also associated with hyperhomocysteinemia that has been reported to be an increased risk factor for neural tube defects and cardiovascular disease. In this chapter, we consider the role that MTHFR plays in relation to folate metabolism and the possible contribution made in relation to certain important clinical outcomes.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources