Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008:79:393-410.
doi: 10.1016/S0083-6729(08)00414-7.

Mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetases

Affiliations
Review

Mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetases

Karen E Christensen et al. Vitam Horm. 2008.

Abstract

Folate-mediated metabolism involves enzyme-catalyzed reactions that occur in the cytoplasmic, mitochondrial, and nuclear compartments in mammalian cells. Which of the folate-dependent enzymes are expressed in these compartments depends on the stage of development, cell type, cell cycle, and whether or not the cell is transformed. Mitochondria become formate-generating organelles in cells and tissues expressing the MTHFD2 and MTHFD1L genes. The products of these nuclear genes were derived from trifunctional precursor proteins, expressing methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetase activities. The MTHFD2 protein is a bifunctional protein with dehydrogenase and cyclohydrolase activities that arose from a trifunctional precursor through the loss of the synthetase domain and a novel adaptation to NAD rather than NADP specificity for the dehydrogenase. The MTHFD1L protein retains the size of its trifunctional precursor, but through the mutation of critical residues, both the dehydrogenase and cyclohydrolase activities have been silenced. MTHFD1L is thus a monofunctional formyltetrahydrofolate synthetase. This review discusses the properties and functions of these mitochondrial proteins and their role in supporting cytosolic purine synthesis during embryonic development and in cells undergoing rapid growth.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources