Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure
- PMID: 18804995
- PMCID: PMC7126046
- DOI: 10.1016/j.bios.2008.08.001
Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure
Abstract
In this paper we demonstrate that the anodic, bioelectrocatalytic performance of wastewater inoculum based, mixed culture microbial biofilms can be considerably improved by using a consecutive, purely electrochemical selection and biofilm acclimatization procedure. The procedure may represent an alternative to a repetitive mechanical biofilm removal, re-suspension and electrochemically facilitated biofilm formation. By using the proposed technique, the bioelectrocatalytic current density was increased from the primary to the secondary biofilm from 250 microAcm(-2) to about 500 microAcm(-2); and the power density of respective microbial fuel cells could be increased from 686 mWm(-2) to 1487 mWm(-2). The electrochemical characterization of the biofilms reveals a strong similarity to Geobacter sulfurreducens biofilms, which may indicate a dominating role of this bacterium in the biofilms.
Figures






Similar articles
-
Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells.ACS Appl Mater Interfaces. 2019 Mar 6;11(9):8961-8968. doi: 10.1021/acsami.8b14340. Epub 2019 Feb 20. ACS Appl Mater Interfaces. 2019. PMID: 30730701
-
Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater.Bioelectrochemistry. 2015 Dec;106(Pt A):150-8. doi: 10.1016/j.bioelechem.2015.04.011. Epub 2015 Apr 25. Bioelectrochemistry. 2015. PMID: 25935865
-
Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1.Nat Commun. 2013;4:2751. doi: 10.1038/ncomms3751. Nat Commun. 2013. PMID: 24202068
-
Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell.Appl Environ Microbiol. 2011 Feb;77(3):1069-75. doi: 10.1128/AEM.02912-09. Epub 2010 Dec 3. Appl Environ Microbiol. 2011. PMID: 21131513 Free PMC article.
-
Application of electro-active biofilms.Biofouling. 2010 Jan;26(1):57-71. doi: 10.1080/08927010903161281. Biofouling. 2010. PMID: 20390557 Review.
Cited by
-
Long-distance electron transfer by G. sulfurreducens biofilms results in accumulation of reduced c-type cytochromes.ChemSusChem. 2012 Jun;5(6):1047-53. doi: 10.1002/cssc.201100734. Epub 2012 May 10. ChemSusChem. 2012. PMID: 22577055 Free PMC article.
-
Anode Surface Bioaugmentation Enhances Deterministic Biofilm Assembly in Microbial Fuel Cells.mBio. 2021 Mar 2;12(2):e03629-20. doi: 10.1128/mBio.03629-20. mBio. 2021. PMID: 33653887 Free PMC article.
-
Bioelectricity Generation in a Microbial Fuel Cell with a Self-Sustainable Photocathode.ScientificWorldJournal. 2015;2015:864568. doi: 10.1155/2015/864568. Epub 2015 Apr 30. ScientificWorldJournal. 2015. PMID: 26065026 Free PMC article.
-
Cytometric fingerprints: evaluation of new tools for analyzing microbial community dynamics.Front Microbiol. 2014 Jun 4;5:273. doi: 10.3389/fmicb.2014.00273. eCollection 2014. Front Microbiol. 2014. PMID: 24926290 Free PMC article.
-
In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling.Nat Rev Microbiol. 2011 Jan;9(1):39-50. doi: 10.1038/nrmicro2456. Epub 2010 Dec 6. Nat Rev Microbiol. 2011. PMID: 21132020 Review.
References
-
- Bruchez M.J., Moronne M., Gin P., Weiss S., Alivisatos A.P. Science. 1998;281:2013–2016. - PubMed
-
- Chan W.C.W., Nie S.M. Science. 1998;281:2016–2018. - PubMed
-
- Dubertret B., Skourides P., Norris D.J., Noireaux V., Brivanlou A.H., Libchaber A. Science. 2002;298:1759–1762. - PubMed
-
- Girod A., Ried M., Wobus C., Lahm H., Leike K., Kleinschmidt J., Deleage G., Hallek M. Nat. Med. 1999;9:1052–1056. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources