Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan 21;366(1-2):14-20.
doi: 10.1016/j.ijpharm.2008.08.035. Epub 2008 Sep 3.

Intestinal first-pass glucuronidation activities of selected dihydroxyflavones

Affiliations

Intestinal first-pass glucuronidation activities of selected dihydroxyflavones

Yin Cheong Wong et al. Int J Pharm. .

Abstract

Flavonoids have low bioavailabilities due to extensive intestinal first-pass metabolisms, especially glucuronidation. The present study aimed to evaluate the intestinal glucuronidation of dihydroxyflavones and provide more information on their structure-activity relationships. Seven dihydroxyflavones, namely 3,7-, 5,7-, 6,7-, 7,8-, 2',7-, 3',7-, and 4',7-dihydroxyflavone and a monohydroxyflavone, 7-hydroxyflavone, were investigated by incubating each hydroxyflavone at various concentrations with either human jejunum microsome or rat intestinal microsome. Two mono-glucuronides were identified for each dihydroxyflavone. For human jejunum microsome, most of the studied dihydroxyflavones demonstrated greater glucuronidation activities than that of 7-hydroxyflavone except for 3,7-dihydroxyflavone and 4',7-dihydroxyflavone. 3',7-dihydroxyflavone had the greatest intrinsic clearance which was at least seven times greater than that of all other dihydroxyflavones. In addition, species difference in glucuronidation activity was observed with human jejunum microsome higher than rat intestinal microsome for all hydroxyflavones except for 3,7-dihydroxyflavone. The results further demonstrated that the hydroxyl group positions do affect the intestinal glucuronidation activity of hydroxyflavones. Increasing the number of hydroxyl groups on A- or B-ring (except for 4'-OH) would enhance the glucuronidation activity of flavones, whereas adding a 3-OH on C-ring might not. Furthermore, existence of hydroxyl group at 3' position may enhance the glucuronidation activity of flavonoids.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources