Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia
- PMID: 18809715
- PMCID: PMC2556800
- DOI: 10.1084/jem.20081188
Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia
Erratum in
- J Exp Med. 2008 Oct 27;205(11):2683
Abstract
The current goal of diabetes therapy is to reduce time-averaged mean levels of glycemia, measured as HbA1c, to prevent diabetic complications. However, HbA1c only explains <25% of the variation in risk of developing complications. Because HbA1c does not correlate with glycemic variability when adjusted for mean blood glucose, we hypothesized that transient spikes of hyperglycemia may be an HbA1c-independent risk factor for diabetic complications. We show that transient hyperglycemia induces long-lasting activating epigenetic changes in the promoter of the nuclear factor kappaB (NF-kappaB) subunit p65 in aortic endothelial cells both in vitro and in nondiabetic mice, which cause increased p65 gene expression. Both the epigenetic changes and the gene expression changes persist for at least 6 d of subsequent normal glycemia, as do NF-kappaB-induced increases in monocyte chemoattractant protein 1 and vascular cell adhesion molecule 1 expression. Hyperglycemia-induced epigenetic changes and increased p65 expression are prevented by reducing mitochondrial superoxide production or superoxide-induced alpha-oxoaldehydes. These results highlight the dramatic and long-lasting effects that short-term hyperglycemic spikes can have on vascular cells and suggest that transient spikes of hyperglycemia may be an HbA1c-independent risk factor for diabetic complications.
Figures




Similar articles
-
Transient High-Glucose Stimulation Induces Persistent Inflammatory Factor Secretion from Rat Glomerular Mesangial Cells via an Epigenetic Mechanism.Cell Physiol Biochem. 2018;49(5):1747-1754. doi: 10.1159/000493619. Epub 2018 Sep 19. Cell Physiol Biochem. 2018. PMID: 30231246
-
Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy.Diabetes. 2011 Apr;60(4):1304-13. doi: 10.2337/db10-0133. Epub 2011 Feb 25. Diabetes. 2011. PMID: 21357467 Free PMC article.
-
Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus.Circ Cardiovasc Genet. 2015 Feb;8(1):150-8. doi: 10.1161/CIRCGENETICS.114.000671. Epub 2014 Dec 3. Circ Cardiovasc Genet. 2015. PMID: 25472959 Clinical Trial.
-
Glycemic memory associated epigenetic changes.Biochem Pharmacol. 2010 Dec 15;80(12):1853-9. doi: 10.1016/j.bcp.2010.06.005. Epub 2010 Jun 19. Biochem Pharmacol. 2010. PMID: 20599797 Review.
-
Glucose metabolism and hyperglycemia.Am J Clin Nutr. 2008 Jan;87(1):217S-222S. doi: 10.1093/ajcn/87.1.217S. Am J Clin Nutr. 2008. PMID: 18175761 Review.
Cited by
-
Epigenetic memory contributing to the pathogenesis of AKI-to-CKD transition.Front Mol Biosci. 2022 Sep 21;9:1003227. doi: 10.3389/fmolb.2022.1003227. eCollection 2022. Front Mol Biosci. 2022. PMID: 36213117 Free PMC article. Review.
-
Long-term pancreatic beta cell exposure to high levels of glucose but not palmitate induces DNA methylation within the insulin gene promoter and represses transcriptional activity.PLoS One. 2015 Feb 6;10(2):e0115350. doi: 10.1371/journal.pone.0115350. eCollection 2015. PLoS One. 2015. PMID: 25658116 Free PMC article.
-
The vascular epigenome in patients with obesity and type 2 diabetes: opportunities for personalized therapies.Vasc Biol. 2020 May 15;2(1):H19-H28. doi: 10.1530/VB-20-0001. eCollection 2020. Vasc Biol. 2020. PMID: 32923971 Free PMC article. Review.
-
Diabetes alters activation and repression of pro- and anti-inflammatory signaling pathways in the vasculature.Front Endocrinol (Lausanne). 2013 Jun 5;4:68. doi: 10.3389/fendo.2013.00068. eCollection 2013. Front Endocrinol (Lausanne). 2013. PMID: 23761786 Free PMC article.
-
Hematopoietic stem cell transplantation ameliorates maternal diabetes-mediated gastrointestinal symptoms and autism-like behavior in mouse offspring.Ann N Y Acad Sci. 2022 Jun;1512(1):98-113. doi: 10.1111/nyas.14766. Epub 2022 Feb 27. Ann N Y Acad Sci. 2022. PMID: 35220596 Free PMC article.
References
-
- Brownlee, M., L.P. Aiello, M.E. Cooper, A.I. Vinik, R. Nesto, and A.J.M. Bolton. 2008. Diabetic Complications. In Williams Textbook of Endocrinology, 11th ed. Larsen, P.R., Kronenberg, H., Melmed, S., and Polonsky, K., editors. W.B. Saunders, Philadelphia. 1417–1501.
-
- Al-Kateb, H., A.P. Boright, L. Mirea, X. Xie, R. Sutradhar, A. Mowjoodi, B. Bharaj, M. Liu, J.M. Bucksa, V.L. Arends, et al. 2008. Multiple superoxide dismutase 1/splicing factor serine alanine 15 variants are associated with the development and progression of diabetic nephropathy: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Genetics study. Diabetes. 57:218–228. - PMC - PubMed
-
- Hu, F.B., M.J. Stampfer, C.G. Solomon, S. Liu, W.C. Willett, F.E. Speizer, D.M. Nathan, and J.E. Manson. 2001. The impact of diabetes mellitus on mortality from all causes and coronary heart disease in women: 20 years of follow-up. Arch. Intern. Med. 161:1717–1723. - PubMed
-
- Fox, C.S., S. Coady, P.D. Sorlie, D. Levy. B. Meigs, R.B. D'Agostino Sr., P.W. Wilson, and P.J. Savage. 2004. Trends in cardiovascular complications of diabetes. JAMA. 292:2495–2499. - PubMed
-
- Krolewski, A.S., E.J. Kosinski, J.H. Warram, O.S. Leland, E.J. Busick, A.C. Asmal, L.I. Rand, A.R. Christlieb, R.F. Bradley, and C.R. Kahn. 1987. Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am. J. Cardiol. 59:750–755. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials