Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2008 Sep 22;168(17):1859-66.
doi: 10.1001/archinte.168.17.1859.

Calorie restriction and bone health in young, overweight individuals

Collaborators, Affiliations
Randomized Controlled Trial

Calorie restriction and bone health in young, overweight individuals

Leanne M Redman et al. Arch Intern Med. .

Abstract

Background: Calorie restriction (CR) is promoted to increase longevity, yet this regimen could lead to bone loss and fracture and therefore affect quality of life.

Methods: Forty-six individuals were randomized to 4 groups for 6 months: (1) healthy diet (control group); (2) 25% CR from baseline energy requirements (CR group); (3) 25% energy deficit by a combination of CR and increased aerobic exercise (CR + EX group); and (4) low-calorie diet (890 kcal/d; goal, 15% weight loss) followed by weight maintenance (LCD group). Bone mineral density (total body and hip by dual-energy x-ray absorptiometry) and serum bone markers (bone-specific alkaline phosphatase, osteocalcin, cross-linked C-telopeptide of type I collagen, and cross-linked N-telopeptide of type I collagen) were measured at baseline and after 6 months.

Results: Mean +/- SE body weight was reduced by -1.0% +/- 1.1% (control), -10.4% +/- 0.9% (CR), -10.0% +/- 0.8% (CR + EX), and -13.9% +/- 0.7% (LCD). Compared with the control group, none of the groups showed any change in bone mineral density for total body or hip. Bone resorption by serum cross-linked C-telopeptide of type I collagen was increased in all 3 intervention groups, with the largest change observed in the LCD group (CR, 23% +/- 10%; CR + EX, 22% +/- 9%; and LCD, 74% +/- 16% vs control, 4% +/- 10%). Serum levels of cross-linked N-telopeptide of type I collagen were also increased in the LCD group. With regard to bone formation, bone alkaline phosphatase levels were decreased in the CR group (-23% +/- 10%) but were unchanged in the CR + EX, LCD, and control groups.

Conclusions: Moderate CR, with or without exercise, that preserves calcium intake for 6 months leads to large changes in body composition without significant bone loss in young adults. Longer studies with assessments of bone architecture are needed to confirm that CR nutrient-dense diets have no deleterious effect on bone health.

Trial registration: clinicaltrials.gov Identifier: NCT00099151.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Effect of different modes of calorie restriction (CR) on weight as previously shown, (A) and body composition changes (fat mass and fat-free mass) (B) after 24 weeks. The study participants were randomized into 1 of 4 groups for 24 weeks: (1) healthy weight maintenance diet (control group); (2) 25% CR from baseline energy requirements (CR group); (3) 12.5% CR and 12.5% increase in energy expenditure through structured aerobic exercise (CR+EX group); and (4) low-calorie diet (890 kcal/d; goal, 15% weight loss) followed by weight maintenance (LCD group).
Figure 2
Figure 2
Changes in bone mineral density (BMD) (A and B), bone mineral content (BMC) (C and D), and bone area (E and F) across the whole body and the total hip areas after 6 months of calorie restriction (CR). Each box plot shows the distribution of BMD from the 25th to the 75th percentile. The line inside each box plot represents the median. The whiskers reflect the interval between the 10th and the 90th percentiles. The line of identity is also shown. The asterisk indicates significant within-group difference (P<.05). The study participants were randomized into 1 of 4 groups for 24 weeks: (1) healthy weight maintenance diet (control group); (2) 25% CR from baseline energy requirements (CR group); (3) 12.5% CR and 12.5% increase in energy expenditure through structured aerobic exercise (CR+EX group); and (4) low-calorie diet (890 kcal/d; goal, 15% weight loss) followed by weight maintenance (LCD group).
Figure 3
Figure 3
Changes in markers of bone formation (bone alkaline phosphatase [A] and osteocalcin [B]) and bone resorption (serum cross-linked N-telopeptide of type I collagen [sNTx] [C] and serum cross-linked C-telopeptide of type I collagen [sCTx] [D]) after 6 months of calorie restriction (CR). Each box plot shows the distribution of bone mineral density from the 25th to the 75th percentile. The line inside each box plot represents the median. The whiskers reflect the interval between the 10th and the 90th percentiles. The line of identity is also shown. Asterisks indicate significant within-group difference (P<.05). The study participants were randomized into 1 of 4 groups for 24 weeks: (1) healthy weight maintenance diet (control group); (2) 25% CR from baseline energy requirements (CR group); (3) 12.5% CR and 12.5% increase in energy expenditure through structured aerobic exercise (CR+EX group); and (4) low-calorie diet (890 kcal/d; goal, 15% weight loss) followed by weight maintenance (LCD group). BCE indicates bone collagen equivalents.

Similar articles

Cited by

References

    1. National Institutes of Health Osteoporosis prevention, diagnosis, and therapy. [Accessed June 30, 2008]. Web site. http://consensus.nih.gov/2000/2000Osteoporosis111html.htm.
    1. Jensen LB, Quaade F, Sorensen OH. Bone loss accompanying voluntary weight loss in obese humans. J Bone Miner Res. 1994;9(4):459–463. - PubMed
    1. Villareal DT, Fontana L, Weiss EP, et al. Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: a randomized controlled trial. Arch Intern Med. 2006;166(22):2502–2510. - PubMed
    1. Heilbronn LK, de Jonge L, Frisard MI, et al. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA. 2006;295(13):1539–1548. - PMC - PubMed
    1. Larson-Meyer DE, Heilbronn LK, Redman LM, et al. Effect of calorie restriction with or without exercise on insulin sensitivity, beta-cell function, fat cell size, and ectopic lipid in overweight subjects. Diabetes Care. 2006;29(6):1337–1344. - PMC - PubMed

Publication types

Associated data