Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Dec;150(6):685-707.
doi: 10.1086/286089.

Host heterogeneity in susceptibility and disease dynamics: tests of a mathematical model

Affiliations

Host heterogeneity in susceptibility and disease dynamics: tests of a mathematical model

G Dwyer et al. Am Nat. 1997 Dec.

Abstract

Most mathematical models of disease assume that transmission is linearly dependent on the densities of host and pathogen. Recent data for animal diseases, however, have cast doubt on this assumption, without assessing the usefulness of alternative models. In this article, we use a combination of laboratory dose-response experiments, field transmission experiments, and observations of naturally occurring populations to show that virus transmission in gypsy moths is a nonlinear function of virus density, apparently because of heterogeneity among individual gypsy moth larvae in their susceptibility to the virus. Dose-response experiments showed that larvae from a laboratory colony of gypsy moths are substantially less heterogeneous in their susceptibility to the virus than are larvae from feral populations, and field experiments showed that there is a more strongly nonlinear relationship between transmission and virus density for feral larvae than for lab larvae. This nonlinearity in transmission changes the dynamics of the virus in natural populations so that a model incorporating host heterogeneity in susceptibility to the virus gives a much better fit to data on virus dynamics from large-scale field plots than does a classical model that ignores host heterogeneity. Our results suggest that heterogeneity among individuals has important effects on the dynamics of disease in insects at several spatial and temporal scales and that heterogeneity in susceptibility may be of general importance in the ecology of disease.

PubMed Disclaimer

LinkOut - more resources