Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep 25:7:18.
doi: 10.1186/1476-0711-7-18.

Predicting the sensitivity and specificity of published real-time PCR assays

Affiliations

Predicting the sensitivity and specificity of published real-time PCR assays

Gordon H Lemmon et al. Ann Clin Microbiol Antimicrob. .

Abstract

Background: In recent years real-time PCR has become a leading technique for nucleic acid detection and quantification. These assays have the potential to greatly enhance efficiency in the clinical laboratory. Choice of primer and probe sequences is critical for accurate diagnosis in the clinic, yet current primer/probe signature design strategies are limited, and signature evaluation methods are lacking.

Methods: We assessed the quality of a signature by predicting the number of true positive, false positive and false negative hits against all available public sequence data. We found real-time PCR signatures described in recent literature and used a BLAST search based approach to collect all hits to the primer-probe combinations that should be amplified by real-time PCR chemistry. We then compared our hits with the sequences in the NCBI taxonomy tree that the signature was designed to detect.

Results: We found that many published signatures have high specificity (almost no false positives) but low sensitivity (high false negative rate). Where high sensitivity is needed, we offer a revised methodology for signature design which may designate that multiple signatures are required to detect all sequenced strains. We use this methodology to produce new signatures that are predicted to have higher sensitivity and specificity.

Conclusion: We show that current methods for real-time PCR assay design have unacceptably low sensitivities for most clinical applications. Additionally, as new sequence data becomes available, old assays must be reassessed and redesigned. A standard protocol for both generating and assessing the quality of these assays is therefore of great value. Real-time PCR has the capacity to greatly improve clinical diagnostics. The improved assay design and evaluation methods presented herein will expedite adoption of this technique in the clinical lab.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Sensitivity by taxonomy level. Each colored diamond represents a real-time PCR assay examined in this paper. Black bars indicate the mean, grey bars indicate the median. Top and bottom of each box indicates 75th and 25th percentiles, and grey lines at whisker ends denote min and max values. The wide ranging sensitivities demonstrate both inconsistency in genetic diversity at a given taxonomy level, and inconsistency in signature design approaches.

References

    1. Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, Yao JDC, Wengenack NL, Rosenblatt JE, Cockerill FR, III, Smith TF. Real-time PCR in clinical microbiology: Applications for routine laboratory testing. Clinical Microbiology Reviews. 2006;19:165–256. doi: 10.1128/CMR.19.1.165-256.2006. - DOI - PMC - PubMed
    1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. - PubMed
    1. Phillipy AM, Mason JA, Ayanbule K, Sommer DD, Taviani E, Huq A, Colwell RR, Knight IT, Salzberg SL. Comprehensive DNA signature discovery and validation. PLoS Computational Biology. 2007;18:e98. doi: 10.1371/journal.pcbi.0030098. - DOI - PMC - PubMed
    1. TaqSim: TaqMan PCR Simulator http://staff.vbi.vt.edu/dyermd/publications/taqsim.html
    1. The Perl Directory http://www.perl.org/

Publication types

MeSH terms