Photosystem II reaction centre quenching: mechanisms and physiological role
- PMID: 18821028
- DOI: 10.1007/s11120-008-9365-3
Photosystem II reaction centre quenching: mechanisms and physiological role
Abstract
Dissipation of excess absorbed light energy in eukaryotic photoautotrophs through zeaxanthin- and DeltapH-dependent photosystem II antenna quenching is considered the major mechanism for non-photochemical quenching and photoprotection. However, there is mounting evidence of a zeaxanthin-independent pathway for dissipation of excess light energy based within the PSII reaction centre that may also play a significant role in photoprotection. We summarize recent reports which indicate that this enigma can be explained, in part, by the fact that PSII reaction centres can be reversibly interconverted from photochemical energy transducers that convert light into ATP and NADPH to efficient, non-photochemical energy quenchers that protect the photosynthetic apparatus from photodamage. In our opinion, reaction centre quenching complements photoprotection through antenna quenching, and dynamic regulation of photosystem II reaction centre represents a general response to any environmental condition that predisposes the accumulation of reduced Q(A) in the photosystem II reaction centres of prokaryotic and eukaryotic photoautotrophs. Since the evolution of reaction centres preceded the evolution of light harvesting systems, reaction centre quenching may represent the oldest photoprotective mechanism.
Similar articles
-
Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation.J Exp Bot. 2006;57(12):2993-3006. doi: 10.1093/jxb/erl058. Epub 2006 Aug 7. J Exp Bot. 2006. PMID: 16893979
-
Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation.Plant J. 2010 Jan;61(2):283-9. doi: 10.1111/j.1365-313X.2009.04051.x. Epub 2009 Oct 16. Plant J. 2010. PMID: 19843315
-
Dependence of reaction center-type energy-dependent quenching on photosystem II antenna size.Biochim Biophys Acta. 2007 Jun;1767(6):773-80. doi: 10.1016/j.bbabio.2007.02.021. Epub 2007 Mar 12. Biochim Biophys Acta. 2007. PMID: 17459330
-
The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II.Biochim Biophys Acta. 2012 Jan;1817(1):182-93. doi: 10.1016/j.bbabio.2011.04.012. Epub 2011 May 1. Biochim Biophys Acta. 2012. PMID: 21565154 Review.
-
Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection.J Exp Bot. 2005 Jan;56(411):365-73. doi: 10.1093/jxb/eri023. Epub 2004 Nov 22. J Exp Bot. 2005. PMID: 15557295 Review.
Cited by
-
Preferential damaging effects of limited magnesium bioavailability on photosystem I in Sulla carnosa plants.Planta. 2015 May;241(5):1189-206. doi: 10.1007/s00425-015-2248-x. Epub 2015 Jan 31. Planta. 2015. PMID: 25637102
-
Energy dissipation pathways in Photosystem 2 of the diatom, Phaeodactylum tricornutum, under high-light conditions.Photosynth Res. 2016 Feb;127(2):219-35. doi: 10.1007/s11120-015-0180-3. Epub 2015 Jul 29. Photosynth Res. 2016. PMID: 26220363
-
From horse thief to professor: confessions of a plant physiologist.Photosynth Res. 2012 Apr;112(1):1-12. doi: 10.1007/s11120-012-9725-x. Epub 2012 Mar 8. Photosynth Res. 2012. PMID: 22399437
-
Different phycobilin antenna organisations affect the balance between light use and growth rate in the cyanobacterium Microcystis aeruginosa and in the cryptophyte Cryptomonas ovata.Photosynth Res. 2012 Mar;111(1-2):173-83. doi: 10.1007/s11120-011-9715-4. Epub 2011 Dec 20. Photosynth Res. 2012. PMID: 22183802
-
A reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, Cyanidioschyzon merolae.J Biol Chem. 2013 Aug 9;288(32):23529-42. doi: 10.1074/jbc.M113.484659. Epub 2013 Jun 17. J Biol Chem. 2013. PMID: 23775073 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous