An acceptor-substrate binding site determining glycosyl transfer emerges from mutant analysis of a plant vacuolar invertase and a fructosyltransferase
- PMID: 18821058
- PMCID: PMC2709226
- DOI: 10.1007/s11103-008-9404-7
An acceptor-substrate binding site determining glycosyl transfer emerges from mutant analysis of a plant vacuolar invertase and a fructosyltransferase
Abstract
Glycoside hydrolase family 32 (GH32) harbors hydrolyzing and transglycosylating enzymes that are highly homologous in their primary structure. Eight amino acids dispersed along the sequence correlated with either hydrolase or glycosyltransferase activity. These were mutated in onion vacuolar invertase (acINV) according to the residue in festuca sucrose:sucrose 1-fructosyltransferase (saSST) and vice versa. acINV(W440Y) doubles transferase capacity. Reciprocally, saSST(C223N) and saSST(F362Y) double hydrolysis. SaSST(N425S) shows a hydrolyzing activity three to four times its transferase activity. Interestingly, modeling acINV and saSST according to the 3D structure of crystallized GH32 enzymes indicates that mutations saSST(N425S), acINV(W440Y), and the previously reported acINV(W161Y) reside very close together at the surface in the entrance of the active-site pocket. Residues in- and outside the sucrose-binding box determine hydrolase and transferase capabilities of GH32 enzymes. Modeling suggests that residues dispersed along the sequence identify a location for acceptor-substrate binding in the 3D structure of fructosyltransferases.
Figures






Similar articles
-
Using natural variation to investigate the function of individual amino acids in the sucrose-binding box of fructan:fructan 6G-fructosyltransferase (6G-FFT) in product formation.Plant Mol Biol. 2005 Jul;58(5):597-607. doi: 10.1007/s11103-005-6504-5. Plant Mol Biol. 2005. PMID: 16158237
-
Developing fructan-synthesizing capability in a plant invertase via mutations in the sucrose-binding box.Plant J. 2006 Oct;48(2):228-37. doi: 10.1111/j.1365-313X.2006.02862.x. Plant J. 2006. PMID: 17018033
-
Fructosyltransferase mutants specify a function for the beta-fructosidase motif of the sucrose-binding box in specifying the fructan type synthesized.Plant Mol Biol. 2004 Apr;54(6):853-63. doi: 10.1007/s11103-004-0276-1. Plant Mol Biol. 2004. PMID: 15604656
-
Donor and acceptor substrate selectivity among plant glycoside hydrolase family 32 enzymes.FEBS J. 2009 Oct;276(20):5788-98. doi: 10.1111/j.1742-4658.2009.07316.x. Epub 2009 Sep 17. FEBS J. 2009. PMID: 19765078 Review.
-
Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications.J Exp Bot. 2009;60(3):727-40. doi: 10.1093/jxb/ern333. Epub 2009 Jan 6. J Exp Bot. 2009. PMID: 19129163 Review.
Cited by
-
Dissecting the molecular basis of the contribution of source strength to high fructan accumulation in wheat.Plant Mol Biol. 2013 Jan;81(1-2):71-92. doi: 10.1007/s11103-012-9983-1. Epub 2012 Nov 1. Plant Mol Biol. 2013. PMID: 23114999
-
Structural and kinetic insights reveal that the amino acid pair Gln-228/Asn-254 modulates the transfructosylating specificity of Schwanniomyces occidentalis β-fructofuranosidase, an enzyme that produces prebiotics.J Biol Chem. 2012 Jun 1;287(23):19674-86. doi: 10.1074/jbc.M112.355503. Epub 2012 Apr 16. J Biol Chem. 2012. PMID: 22511773 Free PMC article.
-
Crystal structures of Aspergillus japonicus fructosyltransferase complex with donor/acceptor substrates reveal complete subsites in the active site for catalysis.J Biol Chem. 2010 Jul 23;285(30):23251-64. doi: 10.1074/jbc.M110.113027. Epub 2010 May 13. J Biol Chem. 2010. PMID: 20466731 Free PMC article.
-
Interaction between fructan metabolism and plant growth regulators.Planta. 2022 Jan 27;255(2):49. doi: 10.1007/s00425-022-03826-1. Planta. 2022. PMID: 35084581 Review.
-
Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress.PLoS One. 2016 Jul 25;11(7):e0159819. doi: 10.1371/journal.pone.0159819. eCollection 2016. PLoS One. 2016. PMID: 27454873 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1074/jbc.M313911200', 'is_inner': False, 'url': 'https://doi.org/10.1074/jbc.m313911200'}, {'type': 'PubMed', 'value': '14973124', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/14973124/'}]}
- Alberto F, Bignon C, Sulzenbacher G, Henrissat B, Czjzek M (2004) The three-dimensional structure of invertase (β-fructosidase) from Thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. J Biol Chem 279:18903–18910. doi:10.1074/jbc.M313911200 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.febslet.2004.04.064', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.febslet.2004.04.064'}, {'type': 'PubMed', 'value': '15178325', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15178325/'}]}
- Altenbach D, Nüesch E, Meyer AD, Boller T, Wiemken A (2004) The large subunit determines catalytic specificity of barley sucrose:fructan 6-fructosyltransferase and fescue sucrose:sucrose 1-fructosyltransferase. FEBS Lett 567:214–218. doi:10.1016/j.febslet.2004.04.064 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.febslet.2005.07.034', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.febslet.2005.07.034'}, {'type': 'PubMed', 'value': '16098522', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16098522/'}]}
- Altenbach D, Nüesch E, Ritsema T, Boller T, Wiemken A (2005) Mutational analysis of the active center of plant fructosyltransferases: Festuca 1-SST and barley 6-SFT. FEBS Lett 579:4647–4653. doi:10.1016/j.febslet.2005.07.034 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1107/S0907444998003254', 'is_inner': False, 'url': 'https://doi.org/10.1107/s0907444998003254'}, {'type': 'PubMed', 'value': '9757107', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9757107/'}]}
- Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921. doi:10.1107/S0907444998003254 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1111/j.1469-8137.1989.tb00322.x', 'is_inner': False, 'url': 'https://doi.org/10.1111/j.1469-8137.1989.tb00322.x'}]}
- Cairns AJ, Winters A, Pollock CJ (1989) Fructan biosynthesis in excised leaves of Lolium temulentum L.III. A comparison of the in vitro properties of fructosyl transferase activities with the characteristics of in vivo fructan accumulation. New Phytol 112:343–352. doi:10.1111/j.1469-8137.1989.tb00322.x
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources