GRAPPA-based susceptibility-weighted imaging of normal volunteers and patients with brain tumor at 7 T
- PMID: 18823730
- PMCID: PMC4905599
- DOI: 10.1016/j.mri.2008.08.003
GRAPPA-based susceptibility-weighted imaging of normal volunteers and patients with brain tumor at 7 T
Abstract
Susceptibility-weighted imaging (SWI) is a valuable technique for high-resolution imaging of brain vasculature that greatly benefits from the emergence of higher field strength MR scanners. Autocalibrating partially parallel imaging techniques can be employed to reduce lengthy acquisition times as long as the decrease in signal-to-noise ratio does not significantly affect the contrast between vessels and brain parenchyma. This study assessed the feasibility of a Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA)-based SWI technique at 7 T in both healthy volunteers and brain tumor patients. GRAPPA-based SWI allowed a twofold or more reduction in scan time without compromising vessel contrast and small vessel detection. Postprocessing parameters for the SWI needed to be modified for patients where the tumor causes high-frequency phase wrap artifacts but did not adversely affect vessel contrast. GRAPPA-based SWI at 7 T revealed regions of microvascularity, hemorrhage and calcification within heterogeneous brain tumors that may aid in characterizing active or necrotic tumor and monitoring treatment effects.
Figures






References
-
- Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004;52(3):612–618. - PubMed
-
- Sehgal V, Delproposto Z, Haacke EM, Tong KA, Wycliffe N, Kido DK, Xu Y, Neelavalli J, Haddar D, Reichenbach JR. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging. 2005;22(4):439–450. - PubMed
-
- Sehgal V, Delproposto Z, Haddar D, Haacke EM, Sloan AE, Zamorano LJ, Barger G, Hu J, Xu Y, Prabhakaran KP, Elangovan IR, Neelavalli J, Reichenbach JR. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging. 2006;24(1):41–51. - PubMed
-
- Ladd ME. High-field-strength magnetic resonance: potential and limits. Top Magn Reson Imaging. 2007;18(2):139–152. - PubMed
-
- Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging. 2004;15(4):223–236. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources