Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 May;63(4):313-8.
doi: 10.1016/j.biopha.2008.07.086. Epub 2008 Sep 7.

Development of an antisense RNA delivery system using conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell-penetrating peptide

Affiliations

Development of an antisense RNA delivery system using conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell-penetrating peptide

Baojun Wei et al. Biomed Pharmacother. 2009 May.

Abstract

RNA-based therapeutic strategies are used widely due to their highly specific mode of action. However, the major obstacle in any RNA-based therapy is cellular delivery and stability in the cells. The self-assembly of the MS2 bacteriophage capsids has been used to develop virus-like particles (VLPs) for drug delivery. In this study, we utilized the heterobifunctional crosslinker, sulfosuccinimidyl-4-(p-maleimidophenyl)-butyrate (sulfo-SMPB), to conjugate the human immunodeficiency virus-1 (HIV-1) Tat peptide and MS2 VLPs; the antisense RNA against the 5'-untranslated region (UTR) and the internal ribosome entry site (IRES) of the hepatitis C virus (HCV) was packaged into these particles by using a two-plasmid coexpression system. The MS2 VLPs conjugated with the Tat peptide were then transferred into Huh-7 cells containing an HCV reporter system. The packaged antisense RNA showed an inhibitory effect on the translation of HCV. This paper describes our initial results with this system using the Tat peptide.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources