Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008;9(9):234.
doi: 10.1186/gb-2008-9-9-234. Epub 2008 Sep 18.

Transcriptome content and dynamics at single-nucleotide resolution

Affiliations
Review

Transcriptome content and dynamics at single-nucleotide resolution

Nicole Cloonan et al. Genome Biol. 2008.

Abstract

Massively parallel short-tag sequencing of cDNA libraries--RNAseq--is being used to study the dynamics and complexity of eukaryotic transcriptomes, giving new biological insights into the 'active genome'.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The identification of differential exon splicing by RNAseq. In this hypothetical genome-browser view, RNAseq tags (shown in red) are aligned to the genome sequence, giving a quantitative view of tag densities across the locus. Genome-aligned reads identify individual exons and exon-exon junction usage can be monitored by matching tags to a reference set of junction sequences. Differential exon-exon junction usage can be used to identify canonical and alternative splicing events.

References

    1. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bähler J. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature. 2008;453:1239–1243. doi: 10.1038/nature07002. - DOI - PubMed
    1. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008;320:1344–1349. doi: 10.1126/science.1158441. - DOI - PMC - PubMed
    1. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–628. doi: 10.1038/nmeth.1226. - DOI - PubMed
    1. Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O'Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo M-L. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science. 2008;321:956–960. doi: 10.1126/science.1160342. - DOI - PubMed
    1. Cloonan N, Forrest AR, Kolle G, Gardiner BBA, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G, Robertson AJ, Perkins AC, Bruce SJ, Lee CC, Ranade SS, Peckham HE, Manning JM, McKernan KJ, Grimmond SM. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods. 2008;5:613–619. doi: 10.1038/nmeth.1223. - DOI - PubMed

LinkOut - more resources