Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Oct 1;9(1):68.
doi: 10.1186/1465-9921-9-68.

Membrane diffusion- and capillary blood volume measurements are not useful as screening tools for pulmonary arterial hypertension in systemic sclerosis: a case control study

Affiliations

Membrane diffusion- and capillary blood volume measurements are not useful as screening tools for pulmonary arterial hypertension in systemic sclerosis: a case control study

Maria J Overbeek et al. Respir Res. .

Abstract

Background: There is no optimal screening tool for the assessment of pulmonary arterial hypertension (PAH) in patients with systemic sclerosis (SSc). A decreasing transfer factor of the lung for CO (TLCO) is associated with the development of PAH in SSc. TLCO can be partitioned into the diffusion of the alveolar capillary membrane (Dm) and the capillary blood volume (Vc). The use of the partitioned diffusion to detect PAH in SSc is not well established yet. This study evaluates whether Dm and Vc could be candidates for further study of the use for screening for PAH in SSc.

Methods: Eleven SSc patients with PAH (SScPAH+), 13 SSc patients without PAH (SScPAH-) and 10 healthy control subjects were included. Pulmonary function testing took place at diagnosis of PAH. TLCO was partitioned according to Roughton and Forster. As pulmonary fibrosis in SSc influences values of the (partitioned) TLCO, these were adjusted for fibrosis score as assessed on HRCT.

Results: TLCO as percentage of predicted (%) was lower in SScPAH+ than in SScPAH- (41 +/- 7% vs. 63 +/- 12%, p < 0.0001, respectively). Dm% in SScPAH+ was decreased as compared with SScPAH- (22 +/- 6% vs. 39 +/- 12%, p < 0.0001, respectively), also after adjustment for total fibrosis score (before adjustment: B = 17.5, 95% CI 9.0-25.9, p = < 0.0001; after adjustment: B = 14.3, 95% CI 6.0-21.7, p = 0.008). No difference was found in Vc%. There were no correlations between pulmonary hemodynamic parameters and Dm% in the PAH groups.

Conclusion: SScPAH+ patients have lower Dm% than SScPAH- patients. There are no correlations between Dm% and hemodynamic parameters of PAH in SScPAH+. These findings do not support further study of the role of partitioning TLCO in the diagnostic work- up for PAH in SSc.

PubMed Disclaimer

Figures

Figure 1
Figure 1
A. The transfer factor of the lung for carbonmonoxide (TLCO%) in patients with systemic sclerosis-associated pulmonary arterial hypertension (SScPAH+) and in patients with systemic sclerosis without PAH (SScPAH-). B. The diffusion capacity of the alveolar capillary membrane as percentage of predicted (Dm%) in SScPAH+ and SScPAH-. Mean and SE are shown.
Figure 2
Figure 2
The ratio of the pulmonary capillary blood volume as percentage of predicted and the diffusion capacity of the alveolar capillary membrane as percentage of predicted (Vc%/Dm%) in patients with systemic sclerosis -associated pulmonary arterial hypertension (SScPAH+) and patients with systemic sclerosis without PAH (SScPAH-). Mean and SE are shown.
Figure 3
Figure 3
The relation between the ratio of the pulmonary capillary blood volume as percentage of predicted and the diffusion capacity of the alveolar capillary membrane as percentage of predicted (Vc%/Dm%) and the pulmonary vascular resistance (PVR) and the mean pulmonary artery pressure (mPpa) in patients with systemic sclerosis-associated pulmonary arterial hypertension (SScPAH) (r2 = 0.16, p = 0.23 and r2 = 0.07, p = 0.52, respectively).

References

    1. LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA, Jr, Rowell N, Wollheim F. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol. 1988;15:202–205. - PubMed
    1. Steen V, Medsger TA., Jr Predictors of isolated pulmonary hypertension in patients with systemic sclerosis and limited cutaneous involvement. Arthritis Rheum. 2003;48:516–522. doi: 10.1002/art.10775. - DOI - PubMed
    1. Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972–2002. Ann Rheum Dis. 2007;66:940–944. doi: 10.1136/ard.2006.066068. - DOI - PMC - PubMed
    1. Fisher MR, Mathai SC, Champion HC, Girgis RE, Housten-Harris T, Hummers L, Krishnan LA, Wigley F, Hassoun PM. Clinical differences between idiopathic and scleroderma-related pulmonary hypertension. Arthritis Rheum. 2006;54:3043–3050. doi: 10.1002/art.22069. - DOI - PubMed
    1. Kawut SM, Taichman DB, Archer-Chicko CL, Palevsky HI, Kimmel SE. Hemodynamics and survival in patients with pulmonary arterial hypertension related to systemic sclerosis. Chest. 2003;123:344–350. doi: 10.1378/chest.123.2.344. - DOI - PubMed

Publication types

MeSH terms