Predicting protein disorder by analyzing amino acid sequence
- PMID: 18831799
- PMCID: PMC2559898
- DOI: 10.1186/1471-2164-9-S2-S8
Predicting protein disorder by analyzing amino acid sequence
Abstract
Background: Many protein regions and some entire proteins have no definite tertiary structure, presenting instead as dynamic, disorder ensembles under different physiochemical circumstances. These proteins and regions are known as Intrinsically Unstructured Proteins (IUP). IUP have been associated with a wide range of protein functions, along with roles in diseases characterized by protein misfolding and aggregation.
Results: Identifying IUP is important task in structural and functional genomics. We exact useful features from sequences and develop machine learning algorithms for the above task. We compare our IUP predictor with PONDRs (mainly neural-network-based predictors), disEMBL (also based on neural networks) and Globplot (based on disorder propensity).
Conclusion: We find that augmenting features derived from physiochemical properties of amino acids (such as hydrophobicity, complexity etc.) and using ensemble method proved beneficial. The IUP predictor is a viable alternative software tool for identifying IUP protein regions and proteins.
Figures
References
-
- Romero P, Dunker AK, et al. Identifying Disordered Regions in Proteins from Amino Acid Sequences. Proceeding of ICNN. 1997. pp. 90–5.
-
- Uversky VN, Fink A. Protein Misfolding, Aggregation and Conformational Diseases. Springer; 2005.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
