Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;9 Suppl 2(Suppl 2):S1.
doi: 10.1186/gb-2008-9-s2-s1. Epub 2008 Sep 1.

Evaluation of text-mining systems for biology: overview of the Second BioCreative community challenge

Affiliations

Evaluation of text-mining systems for biology: overview of the Second BioCreative community challenge

Martin Krallinger et al. Genome Biol. 2008.

Abstract

Background: Genome sciences have experienced an increasing demand for efficient text-processing tools that can extract biologically relevant information from the growing amount of published literature. In response, a range of text-mining and information-extraction tools have recently been developed specifically for the biological domain. Such tools are only useful if they are designed to meet real-life tasks and if their performance can be estimated and compared. The BioCreative challenge (Critical Assessment of Information Extraction in Biology) consists of a collaborative initiative to provide a common evaluation framework for monitoring and assessing the state-of-the-art of text-mining systems applied to biologically relevant problems.

Results: The Second BioCreative assessment (2006 to 2007) attracted 44 teams from 13 countries worldwide, with the aim of evaluating current information-extraction/text-mining technologies developed for one or more of the three tasks defined for this challenge evaluation. These tasks included the recognition of gene mentions in abstracts (gene mention task); the extraction of a list of unique identifiers for human genes mentioned in abstracts (gene normalization task); and finally the extraction of physical protein-protein interaction annotation-relevant information (protein-protein interaction task). The 'gold standard' data used for evaluating submissions for the third task was provided by the interaction databases MINT (Molecular Interaction Database) and IntAct.

Conclusion: The Second BioCreative assessment almost doubled the number of participants for each individual task when compared with the first BioCreative assessment. An overall improvement in terms of balanced precision and recall was observed for the best submissions for the gene mention (F score 0.87); for the gene normalization task, the best results were comparable (F score 0.81) compared with results obtained for similar tasks posed at the first BioCreative challenge. In case of the protein-protein interaction task, the importance and difficulties of experimentally confirmed annotation extraction from full-text articles were explored, yielding different results depending on the step of the annotation extraction workflow. A common characteristic observed in all three tasks was that the combination of system outputs could yield better results than any single system. Finally, the development of the first text-mining meta-server was promoted within the context of this community challenge.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Community evaluations: from bioinformatics to NLP. CAMDA, Critical Assessment of Microarray Data Analysis; CAPRI, Critical Assessment of PRediction of Interactions; CASP, Critical Assessment of Techniques for Protein Structure Prediction; GASP, Genome Annotation Assessment Project; IE, information extraction; IR, information retrieval; JNLPBA, Joint Workshop on Natural Language Processing in Biomedicine and its Applications; KDD, Knowledge Discovery and Data Mining; LLL, Learning Language in Logic; MUC, Message Understanding Conference; NLP, natural language processing; DREAM, Dialogue on Reverse Engineering Assessment and Methods; RTE, Recognising Textual Entailment Challenge; SEMEVAL, Semantic Evaluations; SENSEVAL, Evaluating Word Sense Disambiguation Systems; TREC, Text Retrieval Conference.
Figure 2
Figure 2
BioCreative II tasks. This figure illustrates the basic processing steps covered by the tasks and subtasks posed in BioCreative II. Note that not all of the data collections were aligned (the gene mention [GM], gene normalization [GN], and protein-protein interaction [PPI] tasks used different document collections). (A) Preprocessing of full-text articles was provided in different commonly available formats including HTML, PDF, and automatic plain text conversions from these formats was covered by the interaction pair subtask (IPS), interaction method subtask (IMS), and interaction sentences subtask (ISS). The detection and ranking of abstracts relevant for a given biological topic (in this case protein-protein interactions) was part of the interaction article subtask (IAS). (B) Labeling text with bio-entities of interest was part of the GM task, in which participants had to find gene and protein mentions automatically. (C) To provide direct links of abstracts and full-text articles to database entries, a process often called protein or gene normalization was part of the GN and IPS tasks, respectively. (D) Extraction of specific biological relation types (physical protein-protein interactions) was addressed in the IPS, together with the detection of experimental interaction detection methods used for characterizing these interactions. For human interpretation, retrieval of evidence passages summarizing a particular biological association is crucial. This aspect was addressed in the ISS. Different participating systems were evaluated and compared based on test data collections released by the BioCreative II organizers. To allow integration of different strategies, the BioCreative MetaServer (BCMS) was developed.

References

    1. Krallinger M, Hirschman L, Valencia A. Current use of text mining and literature search systems for genome sciences. Genome Biol. 2008;9(Suppl 2):S8. doi: 10.1186/gb-2008-9-s2-s8. - DOI - PMC - PubMed
    1. Menne K, Hermjakob H, Apweiler R. A comparison of signal sequence prediction methods using a test set of signal peptides. Bioinformatics. 2000;16:741–742. doi: 10.1093/bioinformatics/16.8.741. - DOI - PubMed
    1. Sprenger J, Fink J, Teasdale R. Evaluation and comparison of mammalian subcellular localization prediction methods. BMC Bioinformatics. 2006;7:S3. doi: 10.1186/1471-2105-7-S5-S3. - DOI - PMC - PubMed
    1. Dalal S, Balasubramanian S, Regan L. Protein alchemy: changing beta-sheet into alpha-helix. Nat Struct Biol. 1997;4:548–552. doi: 10.1038/nsb0797-548. - DOI - PubMed
    1. Lopez G, Rojas A, Tress M, Valencia A. Assessment of predictions submitted for the CASP7 function prediction category. Proteins. 2007;69(suppl 8):165–174. doi: 10.1002/prot.21651. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources