Brain-computer interfaces in neurological rehabilitation
- PMID: 18835541
- DOI: 10.1016/S1474-4422(08)70223-0
Brain-computer interfaces in neurological rehabilitation
Abstract
Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.
Similar articles
-
A brain-computer interface using electrocorticographic signals in humans.J Neural Eng. 2004 Jun;1(2):63-71. doi: 10.1088/1741-2560/1/2/001. Epub 2004 Jun 14. J Neural Eng. 2004. PMID: 15876624 Clinical Trial.
-
Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):225-9. doi: 10.1109/TNSRE.2006.875578. IEEE Trans Neural Syst Rehabil Eng. 2006. PMID: 16792300
-
Brain-computer interfaces.Handb Clin Neurol. 2013;110:67-74. doi: 10.1016/B978-0-444-52901-5.00006-X. Handb Clin Neurol. 2013. PMID: 23312631
-
Brain-computer interfaces for communication and control.Clin Neurophysiol. 2002 Jun;113(6):767-91. doi: 10.1016/s1388-2457(02)00057-3. Clin Neurophysiol. 2002. PMID: 12048038 Review.
-
Brain computer interfaces, a review.Sensors (Basel). 2012;12(2):1211-79. doi: 10.3390/s120201211. Epub 2012 Jan 31. Sensors (Basel). 2012. PMID: 22438708 Free PMC article. Review.
Cited by
-
Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters.J Neural Eng. 2013 Jun;10(3):036015. doi: 10.1088/1741-2560/10/3/036015. Epub 2013 Apr 23. J Neural Eng. 2013. PMID: 23611833 Free PMC article.
-
Topographic Somatosensory Imagery for Real-Time fMRI Brain-Computer Interfacing.Front Hum Neurosci. 2019 Dec 5;13:427. doi: 10.3389/fnhum.2019.00427. eCollection 2019. Front Hum Neurosci. 2019. PMID: 31920588 Free PMC article.
-
A Decoding Scheme for Incomplete Motor Imagery EEG With Deep Belief Network.Front Neurosci. 2018 Sep 28;12:680. doi: 10.3389/fnins.2018.00680. eCollection 2018. Front Neurosci. 2018. PMID: 30323737 Free PMC article.
-
BCI-FES With Multimodal Feedback for Motor Recovery Poststroke.Front Hum Neurosci. 2022 Jul 6;16:725715. doi: 10.3389/fnhum.2022.725715. eCollection 2022. Front Hum Neurosci. 2022. PMID: 35874158 Free PMC article.
-
Euler common spatial patterns for EEG classification.Med Biol Eng Comput. 2022 Mar;60(3):753-767. doi: 10.1007/s11517-021-02488-7. Epub 2022 Jan 22. Med Biol Eng Comput. 2022. PMID: 35064439
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical