Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Nov;131(Pt 11):2969-74.
doi: 10.1093/brain/awn239. Epub 2008 Oct 3.

Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method

Affiliations
Comparative Study

Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method

Stefan Klöppel et al. Brain. 2008 Nov.

Abstract

There has been recent interest in the application of machine learning techniques to neuroimaging-based diagnosis. These methods promise fully automated, standard PC-based clinical decisions, unbiased by variable radiological expertise. We recently used support vector machines (SVMs) to separate sporadic Alzheimer's disease from normal ageing and from fronto-temporal lobar degeneration (FTLD). In this study, we compare the results to those obtained by radiologists. A binary diagnostic classification was made by six radiologists with different levels of experience on the same scans and information that had been previously analysed with SVM. SVMs correctly classified 95% (sensitivity/specificity: 95/95) of sporadic Alzheimer's disease and controls into their respective groups. Radiologists correctly classified 65-95% (median 89%; sensitivity/specificity: 88/90) of scans. SVM correctly classified another set of sporadic Alzheimer's disease in 93% (sensitivity/specificity: 100/86) of cases, whereas radiologists ranged between 80% and 90% (median 83%; sensitivity/specificity: 80/85). SVMs were better at separating patients with sporadic Alzheimer's disease from those with FTLD (SVM 89%; sensitivity/specificity: 83/95; compared to radiological range from 63% to 83%; median 71%; sensitivity/specificity: 64/76). Radiologists were always accurate when they reported a high degree of diagnostic confidence. The results show that well-trained neuroradiologists classify typical Alzheimer's disease-associated scans comparable to SVMs. However, SVMs require no expert knowledge and trained SVMs can readily be exchanged between centres for use in diagnostic classification. These results are encouraging and indicate a role for computerized diagnostic methods in clinical practice.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Illustration of performance. Positions are jittered to indicate overlap. Grey error bars display 95% confidence intervals for SVM accuracy. The fourth column illustrates the performance when sets 1 and 3 are combined. Note the shrinking CIs. sAD = sporadic Alzheimer's Disease.
Fig. 2
Fig. 2
Illustration of the correlation between experience (given as the percentage of brain scans out of all scans in daily routine practice) and accuracy. sAD = sporadic Alzheimer's Disease.

References

    1. Ashburner J, Csernansky JG, Davatzikos C, Fox NC, Frisoni GB, Thompson PM. Computer-assisted imaging to assess brain structure in healthy and diseased brains. Lancet Neurol. 2003;2:79–88. - PubMed
    1. Butcher J. Alzheimer's researchers open the doors to data sharing. Lancet Neurol. 2007;6:480–1. - PubMed
    1. Davatzikos C, Fan Y, Wu X, Shen D, Resnick SM. Detection of prodromal Alzheimer's disease via pattern classification of MRI. Neurobiol Aging. 2008a;29:514–23. - PMC - PubMed
    1. Davatzikos C, Fan Y, Wu X, Shen D, Resnick SM. Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging. Neurobiol Aging. 2008b;29:514–23. - PMC - PubMed
    1. Davatzikos C, Resnick SM, Wu X, Parmpi P, Clark CM. Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage. 2008c;41:1220–7. - PMC - PubMed

Publication types