Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan 5;133(1):37-43.
doi: 10.1016/j.jconrel.2008.09.006. Epub 2008 Sep 19.

Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine

Affiliations

Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine

Soon Eon Bae et al. J Control Release. .

Abstract

Poly(lactic-co-glycolic acid) (PLGA) microsphere has been a useful tool in delivering therapeutic drugs and biologically active proteins. In this study, a covered porous PLGA microsphere was manufactured using W(1)/O/W(2) double emulsion solvent evaporation method, utilizing hydrogen peroxide as a novel porogen. An enzymatic reaction between hydrogen peroxide and catalase produced oxygen bubbles and thus many internal pores within microsphere were naturally developed. When different molar ratios between lactide and glycolide in PLGA were examined, the ratio, 50:50 showed the most organized porous microstructure. Higher molecular weight of PLGA seemed to be favorable in creating a porous structure. By testing various concentrations of hydrogen peroxide, it was found that rather concentrated one was more efficient in developing a porous network in the microspheres. The source of the skin layer that covers the whole surface of the microsphere was found to be PLGA, not polyvinyl alcohol (PVA). The residual amount of hydrogen peroxide was negligible after a thorough evaporation of PLGA microsphere. When release profiles of dexamethasone (Dex) with morphologically different microspheres such as, nonporous, covered porous, and porous, were investigated for up to 28 days in vitro, their release patterns were found to be significantly different on a temporal basis. The present work demonstrated that the covered porous PLGA microspheres could be successfully fabricated using hydrogen peroxide and that the covered skin layer on the PLGA microsphere played an important role in determining the characteristic release profiles of Dex.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources