Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov 7;73(21):8175-81.
doi: 10.1021/jo800923a. Epub 2008 Oct 9.

Substituent effects on the rearrangements of cyclohexyl to cyclopentyl radicals involving avermectin-related radicals

Affiliations

Substituent effects on the rearrangements of cyclohexyl to cyclopentyl radicals involving avermectin-related radicals

Jennifer A R Luft et al. J Org Chem. .

Abstract

The rearrangement of a substituted cyclohexyl radical to a cyclopentylmethyl radical on the skeleton of avermectin B1 has been investigated using density functional (UB3LYP/6-31G(d)) and G3MP2B3 computational methods. The rearrangement is preferred when highly radical stabilizing groups are present at the 2- and 3-positions of the cyclohexyl radical. A substituent on the 3-position of the cyclohexyl radical enables ring-cleavage of the cyclohexyl radical, while a radical stabilizing substituent on the 2-position of the cyclohexyl radical stabilizes the final cyclopentylmethyl radical, enabling the overall rearrangement and reversing the normal thermodynamic preference for the hexenyl radical ring closure.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The two chair conformations of fused siloxycycle-cyclohexyl radical, 12a.
Figure 2
Figure 2
Potential energy surface of rearrangement from cyclohexyl radical to cyclopentylmethyl radical for 9, 19, and 21 (relative free energies at UB3LYP/6-31G(d) in kcal/mol).
Figure 3
Figure 3
Potential energy surface of rearrangement from cyclohexyl radical to cyclopentylmethyl radical for 23 and 24 (relative free energies at UB3LYP/6-31G(d) in kcal/mol).
Figure 4
Figure 4
Rearrangement of cyclohexyl radical to cyclopentylmethyl radical for model system 24 (relative free energies at UB3LYP/6-31G(d) in kcal/mol).
Figure 5
Figure 5
Geometries and UB3LYP/6-31G(d)//UHF/3-21G(d) relative energetics (at 0K, in kcal/mol) for the rearrangement of cyclohexyl radical to cyclopentylmethyl radical for model system 28.
Scheme 1
Scheme 1
Formation of 3 (minor) and 4 (major) from reaction of 1.
Scheme 2
Scheme 2
Radical rearrangement investigated by Surzur and UB3LYP/6-31G(d) free energies (kcal/mol)
Scheme 3
Scheme 3
Possible paths for the rearrangement of a substituted cyclohexyl radical to a substituted cyclopentylmethyl radical.
Scheme 4
Scheme 4
Ring-cleavage versus 1,2-shift for formation of 2-cyclohexenone radical.

Similar articles

Cited by

References

    1. Inoue M, Miyazaki K, Ishihara Y, Tatami A, Ohnuma Y, Kawada Y, Komano K, Yamashita S, Lee N, Hirama M. J. Am. Chem. Soc. 2006;128:9352–9354. - PubMed
    2. Fishlock D, Williams RM. Org. Lett. 2006;8:3299–3301. - PubMed
    3. Tangirala R, Antony S, Agama K, Pommier Y, Curran DP. Synlett. 2005;18:2843–2846.
    4. Trost BM, Shen HC, Surivet J-P. J. Am. Chem. Soc. 2004;126:12565–12579. - PubMed
    5. Ng D, Yang Z, Garcia-Garibay MA. Org. Lett. 2004;6:645–647. - PubMed
    6. Takeda Y, Nakabayashi T, Shirai A, Fukumoto D, Kiguchi T, Naito T. Tetrahedron Lett. 2004;45:3481–3484.
    7. Trost BM, Shen HC, Surivet J-P. Angew. Chem. Int. Ed. 2003;42:3943–3947. - PubMed
    8. Inoue M, Sato T, Hirama M. J. Am. Chem. Soc. 2003;125:10772–10773. - PubMed
    9. White JD, Blakemore PR, Green NJ, Hauser EB, Holoboski MA, Keown LE, Kolz CSN, Phillips BW. J. Org. Chem. 2002;67:7750–7760. - PubMed
    10. Gilbert BC, Parsons AF. J. Chem Soc., Perkin Trans. 2. 2002;3:367–387.
    11. Fischer H. Chem. Rev. 2001;101:3581–3610. - PubMed
    12. Takeda Y, Nagano H, Matsuda M, Yajima T. J. Chem Soc., Perkin Trans. 1. 2001;2:174–182.
    13. Murphy JA. Pure Appl. Chem. 2000;72:1327–1334.
    14. Belval F, Fruchier A, Chavis C, Montero J-L, Lucas M. J. Chem. Soc., Perkin Trans. 1. 1999:697–703.
    15. Ohtsuka M, Takekawa Y, Shishido K. Tetrahedron Lett. 1998;39:5803–5806.
    16. Robertson J, Burrows JN, Stupple PA. Tetrahedron. 1997;53:14807–14820.
    17. Bogen S, Malacria M. J. Am. Chem. Soc. 1996;118:3992–3993.
    18. Tamao K, Nagata K, Ito Y, Maeda K, Shiro M. Synlett. 1994:257–259.
    19. Journet M, Malacria M. J. Org. Chem. 1992;57:3085–3093.
    20. Baldwin JE, Adlington RM, Robertson J. Tetrahedron. 1991;47:6795–6812.
    21. Journet M, Smadja W, Malacria M. Synlett. 1990;6:320–322.
    22. Journet M, Magnol E, Angel G, Malacria M. Tetrahedron Lett. 1990;31:4445–4448.
    23. Baldwin JE, Adlington RM, Robertson J. Tetrahedron. 1989;45:909–922.
    24. Baldwin JE, Adlington RM, Robertson J. J. Chem. Soc., Chem. Commun. 1988;21:1404–1406.
    1. Pedersen JM, Bowman WR, Elsegood MR, Fletcher AJ, Lovell PJ. J. Org. Chem. 2005;70:10615–10618. - PubMed
    2. Justicia J, Oller-Lopez JL, Campana AG, Oltra JE, Cuerva JM, Bunuel E, Cardenas DJ. J. Am. Chem. Soc. 2005;127:14911–14921. - PubMed
    3. Nicolaou KC, Sasmal PK, Koftis TV, Converso A, Loizidou E, Kaiser F, Roecker AJ, Dellios CC, Sun X-W, Petrovic G. Angew. Chem. Int. Ed. 2005;44:3447–3452. - PubMed
    4. Kovalenko SV, Peabody S, Manoharan M, Clark RJ, Alabugin IV. Org. Lett. 2004;6:2457–2460. - PubMed
    5. Miyabe H, Ueda M, Fujii, Kayoko N, Azusa, Naito T. J. Org. Chem. 2003;68:5618–5626. - PubMed
    6. Blaszykowski C, Dhimare A-L, Fenterbank L, Malacria M. Org. Lett. 2003;5:1341–1344. - PubMed
    7. Miyabe H, Ueda M, Nishimura A, Naito T. Org. Lett. 2002;4:131–134. - PubMed
    8. Gansauer A, Pierobon M, Bluhm H. Angew. Chem. Int. Ed. 2002;41:3206–3208. - PubMed
    9. Cointeaux L, Berrien J-F, Mayrargue J. Tetrahedron Lett. 2002;43:6275–6277.
    10. Friedstad GK, Massari SE. Org. Lett. 2000;2:4237–4240. - PubMed
    11. Friedstad GK. Org. Lett. 1999;1:1499–1501.
    12. Stork G, Mook R., Jr J. Am. Chem. Soc. 1983;105:3720–3722.
    1. Bennasar M-L, Roca T, Ferrando F. J. Org. Chem. 2006;71:1746–1749. - PubMed
    2. Majumdar KC, Muhuri S. Synthesis. 2006;16:2725–2730.
    3. Bermejo FA, Mateos AF, Escribano AM, Lago RM, Burón LM, López MR, González RR. Tetrahedron. 2006;62:8933–8942.
    4. Pianowski Z, Rupnicki L, Cmoch P, Staliński K. Synlett. 2005;6:900–904.
    5. Szpilman AM, Korshin EE, Rozenberg H, Bachi MD. J. Org. Chem. 2005;70:3618–3632. - PubMed
    6. Lee H-Y, Moon DK, Bahn JS. Tetrahedron Lett. 2005;46:1455–1458.
    7. Rashatasakhon P, Ozdemir AD, Willis J, Padwa A. Org. Lett. 2004;6:917–920. - PubMed
    8. Pave G, Usse-Versluys S, Viaud-Massuard M-C, Guillaumet G. Org. Let. 2003;5:4253–4256. - PubMed
    9. Vargas AC, Quiclet-Sire B, Zard SZ. Org. Lett. 2003;5:3717–3719. - PubMed
    10. Sumi S, Matsumoto K, Tokuyama H, Fukuyama T. Org. Lett. 2003;5:1891–1893. - PubMed
    11. Enholm EJ, Cottone JS, Allais F. Org. Lett. 2001;3:145–147. - PubMed
    12. Gauthier DR, Zandi KS, Shea KJ. Tetrahedron. 1998;54:2289–2338.
    1. Springer JP, Arison BH, Hirshfield JM, Hoogsteen K. J. Am. Chem. Soc. 1981;103:4221.
    2. Fischer MH, Mrozik H. Macrolide Antibiotics. Academic Press; 1985. p. 553.
    3. Davies HG, Green RH. Nat. Prod Rep. 1986;3:87. - PubMed
    1. Kessabi FM, Winkler T, Luft JAR, Houk KN. Org. Lett. 2008 ASAP. - PubMed

Publication types