MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium
- PMID: 18842901
- PMCID: PMC6671033
- DOI: 10.1523/JNEUROSCI.3219-08.2008
MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium
Abstract
Vertebrate brain hosts a diverse collection of microRNAs, but little is known about their functions in vivo. Here we propose that mouse microRNA-9 (miR-9) targets Foxg1 mRNAs for proper generation of Cajal-Retzius cells in the medial pallium. miR-9 expression is mediolaterally graded, being most intense in the cortical hem; it contrasts with the Foxg1 expression in a reciprocal gradient. The 3' untranslated regions of tetrapod, but not of teleost, Foxg1 mRNAs conserve miR-9 target sequences and are regulated by miR-9. Gain- and loss-of-function analyses of miR-9 showed that miR-9 negatively regulates endogenous Foxg1 protein level. Moreover, miR-9 overexpression in developing telencephalon at E11.5 by electroporation resulted in ectopic Reelin-positive cells over the cortex beyond the marginal zone. In addition, inhibition of endogenous miR-9 function by antisense oligonucleotides caused the regression of Wnt3a-positive cortical hem and reduction of reelin-, p73-, and NeuroD1-positive cells.
Figures
References
-
- Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int. 2004;11:36–42.
-
- Bielle F, Griveau A, Narboux-Nême N, Vigneau S, Sigrist M, Arber S, Wassef M, Pierani A. Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat Neurosci. 2005;8:1002–1012. - PubMed
-
- Borrell V, Yoshimura Y, Callaway EM. Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation. J Neurosci Methods. 2005;143:151–158. - PubMed
-
- Bredenkamp N, Seoighe C, Illing N. Comparative evolutionary analysis of the FoxG1 transcription factor from diverse vertebrates identifies conserved recognition sites for microRNA regulation. Dev Genes Evol. 2007;217:227–233. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases