Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Sep;84(3):1378-83.
doi: 10.1161/01.cir.84.3.1378.

Effects of an increase in intracellular free [Mg2+] after myocardial stunning on sarcoplasmic reticulum Ca2+ transport

Affiliations

Effects of an increase in intracellular free [Mg2+] after myocardial stunning on sarcoplasmic reticulum Ca2+ transport

S M Krause et al. Circulation. 1991 Sep.

Abstract

Background: Myocardial stunning has been associated with a greater than twofold increase in intracellular free [Mg2+] from 0.6 to 1.5 mM. The effect of this increase in free [Mg2+] on the function of the sarcoplasmic reticulum (SR) Ca2+ pump was assessed in SR isolated from Langendorff perfused, isovolumic rabbit hearts after 15 minutes of global ischemia.

Methods and results: Our results indicate that myocardial stunning results in a shift in the Ca2+ sensitivity of oxalate-supported, Ca2+ transport over the entire range of free [Ca2+] associated with the cardiac cycle. Using 0.6 mM free Mg2+ as control, maximal rates of Ca2+ transport occurred at 1 microM free Ca2+ (control, 519 +/- 32; stunned, 337 +/- 37 nmol Ca2+.min-1.mg-1). At 0.56 microM free Ca2+, SR Ca2+ transport was reduced from a control of 351 +/- 49 to 263 +/- 12 nmol Ca2+.min-1.mg-1 at 0.6 mM free [Mg2+]. Moreover, an increase in the free [Mg2+] from 0.6 to 1.5 mM results in a greater shift in the Ca2+ activation curve with no change in the level of maximal activation. Ca2+ transport at 0.56 microM free Ca2+ was shifted in the stunned SR from 263 +/- 12 to 138 +/- 29 nmol Ca2+.min-1.mg-1 at 0.6 and 1.5 mM free Mg2+, respectively.

Conclusions: These results indicate that an increase in free [Mg2+] after stunning in combination with the inherent defect in the SR Ca2+ ATPase may reduce the ability of the cell to regulate Ca2+ to a greater extent than previously observed. This impairment in Ca2+ regulatory function may contribute directly to the increase in diastolic tone and indirectly to the reduced systolic function characteristic of the stunned myocardium.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources