Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec;58(6):405-11.
doi: 10.2170/physiolsci.RP012808.

Ramipril improves oxidative stress-related vascular endothelial dysfunction in db/db mice

Affiliations
Free article

Ramipril improves oxidative stress-related vascular endothelial dysfunction in db/db mice

Willmann Liang et al. J Physiol Sci. 2008 Dec.
Free article

Abstract

Endothelial dysfunction often precedes Type 2 diabetes-associated cardiovascular complications. One important cause of endothelial dysfunction is oxidative stress, which can lead to reduced nitric oxide (NO) bioavailability. In this study, we examined the effects of ramipril (an angiotensin-converting enzyme inhibitor, ACEI) on reactive oxygen species (ROS) production and endothelium-dependent vasodilation using a Type 2 diabetic (db/db) murine model. Plasma concentration of 8-isoprostane ([8-isoP]) was measured and used as an indication of the amount of ROS production. Six weeks of ramipril (10 mg/kg/day) treatment significantly reduced [8-isoP] and improved acetylcholine(ACh)-induced vasodilation in db/db mice without altering responses in wild-type (WT) mice. Responsiveness of smooth muscle cells to NO, assessed by sodium nitroprusside-induced vasodilation, was not different between db/db and WT mice regardless of ramipril or vehicle treatment. Our results suggest that ramipril specifically improved endothelium-dependent vasodilation in Type 2 diabetic mice, possibly by reducing ROS levels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms