Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan;72(1):64-6.
doi: 10.1016/j.mehy.2008.07.055. Epub 2008 Oct 8.

Dorsal root ganglia, sodium channels, and fibromyalgia sympathetic pain

Affiliations

Dorsal root ganglia, sodium channels, and fibromyalgia sympathetic pain

Manuel Martinez-Lavin et al. Med Hypotheses. 2009 Jan.

Abstract

Fibromyalgia (FM) is the most frequent cause of generalized pain in the community. Trauma and infection are frequent FM triggering events. A consistent line of investigation suggests that autonomic dysfunction may explain the multi-system features of FM, and that FM is a sympathetically maintained neuropathic pain syndrome. Dorsal root ganglia (DRG) are potential sympathetic-nociceptive short-circuit sites. Sodium channels located in DRG (particularly Nav1.7) act as molecular gatekeepers of pain detection at peripheral nociceptors. Different infecting agents may lie dormant in DGR. Trauma or infection can induce neuroplasticity with an over-expression of sympathetic fibers and sodium channels in DRG. Nerve growth factor (NGF) mediates these phenotypic changes, which enable catecholamines and/or sympathetic impulses to activate nociceptors. Several DRG sodium "channelopathies" have been recently associated to rare painful-dysautonomic syndromes, such as primary erythermalgia and paroxysmal extreme pain disorder (formerly familial rectal pain syndrome). We propose that enhanced DRG excitability may play a key role in FM pain. Individuals at risk would be those with genetically determined sympathetic hyperactivity, or those with inherent sodium channelopathies. Today's stressful environment may contribute to permanent sympathetic hyperactivity. Trauma or infection would induce sodium channels up-regulation and sympathetic sprouting in DRG through NGF over-expression. High levels of NGF have been reported in the cerebro-spinal fluid of FM patients. These post-traumatic (or post-infective) phenotypic changes would induce a sympathetically maintained neuropathic pain syndrome resulting in widespread pain, allodynia and paresthesias - precisely, the key clinical features of FM. If this hypothesis proves to be true, then sodium channel blockers could become therapeutic options for FM pain.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources