Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov 13;51(21):6853-65.
doi: 10.1021/jm800967h. Epub 2008 Oct 11.

Tricyclic [1,2,4]triazine 1,4-dioxides as hypoxia selective cytotoxins

Affiliations

Tricyclic [1,2,4]triazine 1,4-dioxides as hypoxia selective cytotoxins

Michael P Hay et al. J Med Chem. .

Abstract

A series of novel tricyclic triazine-di- N-oxides (TTOs) related to tirapazamine have been designed and prepared. A wide range of structural arrangements with cycloalkyl, oxygen-, and nitrogen-containing saturated rings fused to the triazine core, coupled with various side chains linked to either hemisphere, resulted in TTO analogues that displayed hypoxia-selective cytotoxicity in vitro. Optimal rates of hypoxic metabolism and tissue diffusion coefficients were achieved with fused cycloalkyl rings in combination with both the 3-aminoalkyl or 3-alkyl substituents linked to weakly basic soluble amines. The selection was further refined using pharmacokinetic/pharmacodynamic model predictions of the in vivo hypoxic potency (AUC req) and selectivity (HCD) with 12 TTO analogues predicted to be active in vivo, subject to the achievement of adequate plasma pharmacokinetics.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Figure 2
Figure 2
Figure 2a. Predicted Hypoxic Selectivity (HCD) and Potency (AUCreq) for BTOs. Legend for Table 2a: ●compounds predicted inactive; formula image, active in vivo; formula image, not tested due to structural similarity to actives; formula image , not active in vivo. Data from Refs and . Figure 2b. Predicted Hypoxic Selectivity (HCD) and Potency (AUCreq) for TTOs. Legend for Table 2b: ● TTOs from Table 1; formula image, TTOs from Table 2; formula image, TTOs from Table 3.
Figure 2
Figure 2
Figure 2a. Predicted Hypoxic Selectivity (HCD) and Potency (AUCreq) for BTOs. Legend for Table 2a: ●compounds predicted inactive; formula image, active in vivo; formula image, not tested due to structural similarity to actives; formula image , not active in vivo. Data from Refs and . Figure 2b. Predicted Hypoxic Selectivity (HCD) and Potency (AUCreq) for TTOs. Legend for Table 2b: ● TTOs from Table 1; formula image, TTOs from Table 2; formula image, TTOs from Table 3.
Scheme 1<sup>a</sup>
Scheme 1a
aReagents: (i) NH2CN, HCl, Δ; then 30% NaOH, Δ; (ii) CH3CO3H, CH3CO2H; (iii) NaNO2, CF3CO2H; (iv) DMF, POCl3, Δ; (v) t-BuNO2, CH2I2, CuI, THF, Δ; (vi) R2CH2CH2NH2, DME, Δ; (vii) Stille or Heck coupling; (viii) CF3CO3H, CF3CO2H, DCM.
Scheme 2<sup>a</sup>
Scheme 2a
aReagents: (i) Ac2O, dioxane; (ii) KNO3, H2SO4; (iii) 5 M HCl, Δ; (iv) NH2CN, HCl, Δ; then 30% NaOH, Δ; (v) CH3CO3H, CH3CO2H; (vi) NaNO2, CF3CO2H; (vii) DMF, POCl3, Δ; (viii) RCH2CH2NH2, DME, Δ; (ix) CF3CO3H, CF3CO2H, DCM.
Scheme 3<sup>a</sup>
Scheme 3a
aReagents: (i) cHNO3; (ii) H2, Pd/C, cHCl, EtOH; (iii) Ac2O, dioxane; (iv) cHNO3, CF3CO2H; (v) cHCl, EtOH, Δ; (vi) NH2CN, HCl, Δ; then 30% NaOH, Δ; (vii) NaNO2, CF3CO2H; (viii) DMF, POCl3, Δ; (ix) RCH2CH2NH2, DME, Δ; (x) CF3CO3H, CF3CO2H, DCM.
Scheme 4<sup>a</sup>
Scheme 4a
aReagents: (i) fHNO3, H2SO4; (ii) H2, Pd/C, cHCl, EtOH; (iii) Ac2O, dioxane; (iv) KNO3, H2SO4; (v) 5 M HCl, Δ; (vi) NH2CN, HCl, Δ; then 30% NaOH, Δ; (vii) NaNO2, CF3CO2H; (viii) DMF, POCl3, Δ; (ix) RCH2CH2NH2, DME, Δ; (x) CF3CO3H, CF3CO2H, DCM.
Scheme 5<sup>a</sup>
Scheme 5a
aReagents: (i) fHNO3, cH2SO4; (ii) H2, Pd/C, cHCl, EtOH; (iii) Ac2O, dioxane; (iv) KNO3, H2SO4; (v) 5 M HCl, Δ; (vi) NH2CN, HCl, Δ; then 30% NaOH, Δ; (vii) NaNO2, CF3CO2H; (viii) DMF, POCl3, Δ; (ix) RCH2CH2NH2, DME, Δ; (x) CF3CO3H, CF3CO2H, DCM.
Scheme 6<sup>a</sup>
Scheme 6a
aReagents: (i) AlCl3, AcCl, DCM; (ii) NH2OH·HCl, pyridine; then HCl, Ac2O, HOAc; (iii) cHNO3, HOAc; (iv) cHCl, EtOH, Δ; (v) NH2CN, HCl, Δ; then 30% NaOH, Δ; (vi) NaNO2, CF3CO2H; (vii) DMF, POCl3, Δ; (viii) R2CH2CH2NH2, DME, Δ; (ix) CF3CO3H, CF3CO2H, DCM; (x) NaNO2, cH2SO4; then H3PO2 (xi) H2, PtO2, THF, EtOH; (xii) Ac2O, dioxane; (xiii) CH3CO3H, HOAc; (xiv) NaOMe, MeOH, Δ.
Scheme 7<sup>a</sup>
Scheme 7a
aReagents: (i) KNO3, cH2SO4; (ii) H2, Pd/C, aq. HCl, EtOAc/EtOH; (iii) Ac2O, dioxane; (iv) Zn, HOAc, Δ; (v) AlCl3, AcCl, DCM; (vi) NH2OH·HCl, pyridine; then HCl, Ac2O, HOAc; (vii) fHNO3, HOAc; (viii) cHCl, EtOH, Δ; (ix) NH2CN, HCl, Δ; then 30% NaOH, Δ; (x) NaNO2, CF3CO2H; (xi) DMF, POCl3, Δ; (xii) R2CH2CH2NH2, DME, Δ; (xiii) CF3CO3H, CF3CO2H, DCM.
Scheme 8<sup>a</sup>
Scheme 8a
aReagents: (i) MsCl, iPr2Net, DCM; (ii) aq. NHMe2, DMF, Δ; (iii) cHNO3, CF3CO2H; (iv) H2, Pd/C, aq. HCl, EtOAc/EtOH; (v) Ac2O, Et3N, DCM; (vi) fHNO3, HOAc; (vii) HCl, EtOH, Δ; (viii) NH2CN, HCl, Δ; then 30% NaOH, Δ; (ix) NaNO2, CF3CO2H; (iv) H2, Pd/C, aq. HCl, EtOAc/EtOH; (v) Ac2O, Et3N, DCM; (vi) fHNO3, HOAc; (vii) HCl, EtOH, Δ; (viii) NH2CN, HCl, Δ; then 30% NaOH, Δ; (ix) NaNO2, CF3CO2H; (x) DMF, POCl3, Δ; (xi) EtNH2, DME, Δ; (xii) CF3CO3H, CF3CO2H, DCM; (xiii) KNO3, cH2SO4; (xiv) EtNH2·HCl, Et3N, DMF, Δ; (xv) HCO2H, Ac2O, THF; then BH3·DMS.
Scheme 9<sup>a</sup>
Scheme 9a
aReagents: (i) t-BuNO2, CH2I2, CuI, THF, Δ; (ii) AllylOH, Pd(OAc)2, nBu4NBr, NaHCO3, DMF, Δ; (iii) morpholine, MeOH; then NaCNBH3, HOAc; (iv) CF3CO2H, CF3CO3H, DCM;
Scheme 10<sup>a</sup>
Scheme 10a
aReagents: (i)NaH, (EtO2C)2CH2, Et2O; (ii) NaOH, EtOH; (iii) xylene, Δ; (iv) BH3·DMS, THF; (v) H2, Pd/C, MeOH; (vi) Ac2O, Et3N, DCM; (vii) cHNO3, CF3CO2H; (viii) 5 M HCl, MeOH, Δ; (ix) NH2CN, HCl, Δ; then 30% NaOH, Δ; (x) TBDMSCl, iPr2NEt, DMF; (xi) t-BuNO2, CH2I2, CuI, THF, Δ; (xii) Et4Sn, Pd(PPh3)4, DME, Δ; (xiii) 1 M HCl, MeOH, Δ; (xiv) CF3CO3H, DCM; (xv) MsCl, iPr2NEt, DCM; then morpholine, DMF, Δ; (xvi) cHCl, dioxane, Δ.
Scheme 11<sup>a</sup>
Scheme 11a
aReagents: (i) AllylSnBu3, Pd(PPh3)4, DME, Δ; (ii) 9-BBN, THF; then NaOAc, H2O2; (iii) MsCl, iPr2NEt, DCM; then morpholine, DMF; (iv) 1 M HCl, MeOH; (v) CF3CO3H, CF3CO2H,DCM.
Scheme 12<sup>a</sup>
Scheme 12a
aReagents: (i) 50% aq. HCOCO2H, cH2SO4, dioxane, Δ; (ii) H2, Pd/C, MeOH, dioxane; (iii) cH2SO4, EtOH; (iv) LiAlH4, THF; (v) Ac2O, pyridine, DMAP, DCM; (vi) Cu(NO3)2·3H2O, Ac2O; (vii) Ac2O, dioxane; (viii) cHNO3, CF3CO2H; (ix)) 5 M HCl, MeOH, Δ; (x) NH2CN, HCl, Δ; then 30% NaOH, Δ; (xi) t-BuNO2, I2, CuI, THF, Δ; (xii) dihydropyran, PPTS, DCM; (xiii) Et4Sn, Pd(PPh3)4, DME, Δ; (xiv) MeSO3H, MeOH; (xv) CF3CO2H, CF3CO3H, DCM; (xvi) MsCl, iPr2NEt, DCM; then morpholine, DMF, Δ.
Scheme 13<sup>a</sup>
Scheme 13a
aReagents: (i) t-BuNO2, CH2I2, CuI, THF, Δ; (ii) Allyl alcohol, Pd(OAc)2, nBu4NBr, NaHCO3, DMF; (iii) morpholine, NaCNBH3, MeOH, DMF; (iv) CF3CO3H, CF3CO2H, DCM; (v) Et4Sn, Pd(PPh3)4, DME, Δ; (vi) NH2CN, HCl, Δ; then 30% NaOH, Δ; (vii) NaNO2, CF3CO2H; (viii) DMF, POCl3, Δ.

Similar articles

Cited by

References

    1. Semenza GL. HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenergetics Biomembranes. 2007;39:231–234. - PubMed
    1. Gatenby RA, Gillies RJ. Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol. 2007;39:1358–1366. - PubMed
    1. Harris AL. Hypoxia-a key regulatory factor in tumour growth. Nature Rev Cancer. 2002;2:38–47. - PubMed
    1. Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med. 2002;8:S62–S67. - PubMed
    1. Pennachietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell. 2003;3:347–361. - PubMed

Publication types