Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov;295(5):H2113-27.
doi: 10.1152/ajpheart.00879.2008. Epub 2008 Oct 10.

TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair

Affiliations
Free article

TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair

Nicholas W Clavin et al. Am J Physiol Heart Circ Physiol. 2008 Nov.
Free article

Abstract

Although clinical studies have identified scarring/fibrosis as significant risk factors for lymphedema, the mechanisms by which lymphatic repair is impaired remain unknown. Transforming growth factor -beta1 (TGF-beta1) is a critical regulator of tissue fibrosis/scarring and may therefore also play a role in the regulation of lymphatic regeneration. The purpose of this study was therefore to assess the role of TGF-beta1 on scarring/fibrosis and lymphatic regeneration in a mouse tail model. Acute lymphedema was induced in mouse tails by full-thickness skin excision and lymphatic ligation. TGF-beta1 expression and scarring were modulated by repairing the wounds with or without a topical collagen gel. Lymphatic function and histological analyses were performed at various time points. Finally, the effects of TGF-beta1 on lymphatic endothelial cells (LECs) in vitro were evaluated. As a result, the wound repair with collagen gel significantly reduced the expression of TGF-beta1, decreased scarring/fibrosis, and significantly accelerated lymphatic regeneration. The addition of recombinant TGF-beta1 to the collagen gel negated these effects. The improved lymphatic regeneration secondary to TGF-beta1 inhibition was associated with increased infiltration and proliferation of LECs and macrophages. TGF-beta1 caused a dose-dependent significant decrease in cellular proliferation and tubule formation of isolated LECs without changes in the expression of VEGF-C/D. Finally, the increased expression of TGF-beta1 during wound repair resulted in lymphatic fibrosis and the coexpression of alpha-smooth muscle actin and lymphatic vessel endothelial receptor-1 in regenerated lymphatics. In conclusion, the inhibition of TGF-beta1 expression significantly accelerates lymphatic regeneration during wound healing. An increased TGF-beta1 expression inhibits LEC proliferation and function and promotes lymphatic fibrosis. These findings imply that the clinical interventions that diminish TGF-beta1 expression may be useful in promoting more rapid lymphatic regeneration.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources