Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Dec 15;178(12):1227-37.
doi: 10.1164/rccm.200807-1020OC. Epub 2008 Oct 10.

Deleterious role of TLR3 during hyperoxia-induced acute lung injury

Affiliations
Comparative Study

Deleterious role of TLR3 during hyperoxia-induced acute lung injury

Lynne A Murray et al. Am J Respir Crit Care Med. .

Abstract

Rationale: Acute respiratory distress syndrome (ARDS) manifests clinically as a consequence of septic and/or traumatic injury in the lung. Oxygen therapy remains a major therapeutic intervention in ARDS, but this can contribute further to lung damage. Patients with ARDS are highly susceptible to viral infection and it may be due to altered Toll-like receptor (TLR) expression.

Objectives: To evaluate the role of TLR3 in ARDS.

Methods: TLR3 expression and signaling was determined in airway epithelial cells after in vitro hyperoxia challenge. Using a murine model of hyperoxia-induced lung injury, the role of TLR3 was determined using either TLR3-gene deficient mice or a specific neutralizing antibody directed to TLR3.

Measurements and main results: Increased TLR3 expression was observed in airway epithelial cells from patients with ARDS. Further, hyperoxic conditions alone were a major stimulus for increased TLR3 expression and activation in cultured human epithelial cells. Interestingly, TLR3(-/-) mice exhibited less acute lung injury, activation of apoptotic cascades, and extracellular matrix deposition after 5 days of 80% oxygen compared with wild-type (TLR3(+/+)) mice under the same conditions. Administration of a monoclonal anti-TLR3 antibody to TLR3(+/+) mice exposed to hyperoxic conditions likewise protected these mice from lung injury and inflammation.

Conclusions: The potential for redundancy in function as well as cross-talk between distinct TLRs may indeed contribute to whether the inflammatory cascade can be effectively disrupted once signaling has been initiated. Together, these data show that TLR3 has a major role in the development of ARDS-like pathology in the absence of a viral pathogen.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources