Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Mar-Apr;2(2):100-16.
doi: 10.4161/chan.2.2.6022. Epub 2008 Mar 9.

Peptide toxins that selectively target insect Na(V) and Ca(V) channels

Affiliations
Free article
Review

Peptide toxins that selectively target insect Na(V) and Ca(V) channels

Glenn F King et al. Channels (Austin). 2008 Mar-Apr.
Free article

Abstract

Numerous metazoans express venoms for the purpose of defense, competitor deterrence or prey capture. Peptide neurotoxins are particularly well represented in the venoms of arachnids, cnidarians and mollusks and these toxins often possess high affinity and specificity for particular classes of ion channels. Some of these toxins have become the defining pharmacology for certain vertebrate ion channel subtypes. Unfortunately, due to differences in the structure, pharmacology and ion selectivity of insect voltage-gated sodium (Na(V)) and calcium (Ca(V)) channels compared with their vertebrate counterparts, these peptide toxins have proven less useful for the characterization of insect ion channels. Despite these disparities in channel structure and function, the armament of peptide toxins that specifically modulate the activity of insect ion channels is slowly expanding. This review focuses on insect-selective peptide toxins and their utility for the study of insect Na(V) and Ca(V) channels. The high affinity and selectivity of some of these neurotoxins means that they have the potential to become the defining pharmacology for specific subtypes of insect ion channels. In addition, it might be possible to exploit the phyletic specificity of these toxins as the basis for rational development of novel classes of ion channel insecticides.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources