Chromatin insulators: regulatory mechanisms and epigenetic inheritance
- PMID: 18851828
- PMCID: PMC2576288
- DOI: 10.1016/j.molcel.2008.08.017
Chromatin insulators: regulatory mechanisms and epigenetic inheritance
Abstract
Enhancer-blocking insulators are DNA elements that disrupt the communication between a regulatory sequence, such as an enhancer or a silencer, and a promoter. Insulators participate in both transcriptional regulation and global nuclear organization, two features of chromatin that are thought to be maintained from one generation to the next through epigenetic mechanisms. Furthermore, there are many regulatory mechanisms in place that enhance or hinder insulator activity. These modes of regulation could be used to establish cell-type-specific insulator activity that is epigenetically inherited along a cell and/or organismal lineage. This review will discuss the evidence for epigenetic inheritance and regulation of insulator function.
Figures
References
-
- Awad TA, Bigler J, Ulmer JE, Hu YJ, Moore JM, Lutz M, Neiman PE, Collins SJ, Renkawitz R, Lobanenkov VV, Filippova GN. Negative transcriptional regulation mediated by thyroid hormone response element 144 requires binding of the multivalent factor CTCF to a novel target DNA sequence. The Journal of biological chemistry. 1999;274:27092–27098. - PubMed
-
- Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129:823–837. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
