Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Oct;7(10):3330-42.
doi: 10.1158/1535-7163.MCT-08-0363.

Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: a Bcl-2- and superoxide dismutase 2-dependent mechanism

Affiliations

Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: a Bcl-2- and superoxide dismutase 2-dependent mechanism

Sonia Priego et al. Mol Cancer Ther. 2008 Oct.

Abstract

Colorectal cancer is one of the most common malignancies worldwide. The treatment of advanced colorectal cancer with chemotherapy and radiation has two major problems: development of tumor resistance to therapy and nonspecific toxicity towards normal tissues. Different plant-derived polyphenols show anticancer properties and are pharmacologically safe. In vitro growth of human HT-29 colorectal cancer cells is inhibited ( approximately 56%) by bioavailable concentrations of trans-pterostilbene (trans-3,5-dimethoxy-4'-hydroxystilbene; t-PTER) and quercetin (3,3',4',5,6-pentahydroxyflavone; QUER), two structurally related and naturally occurring small polyphenols. I.v. administration of t-PTER and QUER (20 mg/kg x day) inhibits growth of HT-29 xenografts ( approximately 51%). Combined administration of t-PTER + QUER, FOLFOX6 (oxaliplatin, leucovorin, and 5-fluorouracil; a first-line chemotherapy regimen), and radiotherapy (X-rays) eliminates HT-29 cells growing in vivo leading to long-term survival (>120 days). Gene expression analysis of a Bcl-2 family of genes and antioxidant enzymes revealed that t-PTER + QUER treatment preferentially promotes, in HT-29 cells growing in vivo, (a) superoxide dismutase 2 overexpression ( approximately 5.7-fold, via specificity protein 1-dependent transcription regulation) and (b) down-regulation of bcl-2 expression ( approximately 3.3-fold, via inhibition of nuclear factor-kappaB activation). Antisense oligodeoxynucleotides to human superoxide dismutase 2 and/or ectopic bcl-2 overexpression avoided polyphenols and chemoradiotherapy-induced colorectal cancer elimination and showed that the mangano-type superoxide dismutase and Bcl-2 are key targets in the molecular mechanism activated by the combined application of t-PTER and QUER.

PubMed Disclaimer

Publication types

MeSH terms