Genetics of mating and sex determination in the parasitic nematode Haemonchus contortus
- PMID: 18854587
- PMCID: PMC2600929
- DOI: 10.1534/genetics.108.094623
Genetics of mating and sex determination in the parasitic nematode Haemonchus contortus
Abstract
Genetic analysis of parasitic nematodes has been a neglected area of research and the basic genetics of this important group of pathogens are poorly understood. Haemonchus contortus is one of the most economically significant livestock parasites worldwide and is a key experimental model for the strongylid nematode group that includes many important human and animal pathogens. We have undertaken a study of the genetics and the mode of mating of this parasite using microsatellite markers. Inheritance studies with autosomal markers demonstrated obligate dioecious sexual reproduction and polyandrous mating that are reported here for the first time in a parasitic helminth and provide the parasite with a mechanism of increasing genetic diversity. The karyotype of the H. contortus, MHco3(ISE) isolate was determined as 2n = 11 or 12. We have developed a panel of microsatellite markers that are tightly linked on the X chromosome and have used them to determine the sex chromosomal karyotype as XO male and XX female. Haplotype analysis using the X-chromosomal markers also demonstrated polyandry, independent of the autosomal marker analysis, and enabled a more direct estimate of the number of male parental genotypes contributing to each brood. This work provides a basis for future forward genetic analysis on H. contortus and related parasitic nematodes.
Figures


Similar articles
-
A method for single pair mating in an obligate parasitic nematode.Int J Parasitol. 2018 Feb;48(2):159-165. doi: 10.1016/j.ijpara.2017.08.010. Epub 2017 Oct 27. Int J Parasitol. 2018. PMID: 29111440
-
Evidence from two independent backcross experiments supports genetic linkage of microsatellite Hcms8a20, but not other candidate loci, to a major ivermectin resistance locus in Haemonchus contortus.Int J Parasitol. 2016 Sep;46(10):653-61. doi: 10.1016/j.ijpara.2016.04.007. Epub 2016 May 20. Int J Parasitol. 2016. PMID: 27216082
-
Genetic evidence for the spread of a benzimidazole resistance mutation across southern India from a single origin in the parasitic nematode Haemonchus contortus.Int J Parasitol. 2015 Sep;45(11):721-8. doi: 10.1016/j.ijpara.2015.04.007. Epub 2015 Jun 19. Int J Parasitol. 2015. PMID: 26099649
-
Haemonchus contortus: Genome Structure, Organization and Comparative Genomics.Adv Parasitol. 2016;93:569-98. doi: 10.1016/bs.apar.2016.02.016. Epub 2016 Apr 11. Adv Parasitol. 2016. PMID: 27238013 Review.
-
Prospects for exploring molecular developmental processes in Haemonchus contortus.Int J Parasitol. 2006 Jul;36(8):859-68. doi: 10.1016/j.ijpara.2006.04.007. Epub 2006 May 17. Int J Parasitol. 2006. PMID: 16759659 Review.
Cited by
-
Effect of Ivermectin on the Expression of P-Glycoprotein in Third-Stage Larvae of Haemonchus contortus Isolated from China.Animals (Basel). 2023 Jun 1;13(11):1841. doi: 10.3390/ani13111841. Animals (Basel). 2023. PMID: 37889791 Free PMC article.
-
Anthelmintic resistance: markers for resistance, or susceptibility?Parasitology. 2011 Feb;138(2):160-74. doi: 10.1017/S0031182010001198. Epub 2010 Sep 9. Parasitology. 2011. PMID: 20825689 Free PMC article. Review.
-
Selection of Genome-Wide SNPs for Pooled Allelotyping Assays Useful for Population Monitoring.Genome Biol Evol. 2022 Mar 2;14(3):evac030. doi: 10.1093/gbe/evac030. Genome Biol Evol. 2022. PMID: 35179579 Free PMC article.
-
Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans.PLoS One. 2011;6(8):e23216. doi: 10.1371/journal.pone.0023216. Epub 2011 Aug 15. PLoS One. 2011. PMID: 21858033 Free PMC article.
-
WormBase: Annotating many nematode genomes.Worm. 2012 Jan 1;1(1):15-21. doi: 10.4161/worm.19574. Worm. 2012. PMID: 24058818 Free PMC article.
References
-
- Anderson, T. J., 2001. The dangers of using single locus markers in parasite epidemiology: Ascaris as a case study. Trends Parasitol. 17 183–188. - PubMed
-
- Blouin, M. S., J. Liu and R. E. Berry, 1999. Life cycle variation and the genetic structure of nematode populations. Heredity 83(Pt. 3): 253–259. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources