Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Nov;21(11):2230-44.
doi: 10.1162/jocn.2008.21144.

Neural discrimination of nonprototypical chords in music experts and laymen: an MEG study

Affiliations
Comparative Study

Neural discrimination of nonprototypical chords in music experts and laymen: an MEG study

Elvira Brattico et al. J Cogn Neurosci. 2009 Nov.

Abstract

At the level of the auditory cortex, musicians discriminate pitch changes more accurately than nonmusicians. However, it is not agreed upon how sound familiarity and musical expertise interact in the formation of pitch-change discrimination skills, that is, whether musicians possess musical pitch discrimination abilities that are generally more accurate than in nonmusicians or, alternatively, whether they may be distinguished from nonmusicians particularly with respect to the discrimination of nonprototypical sounds that do not play a reference role in Western tonal music. To resolve this, we used magnetoencephalography (MEG) to measure the change-related magnetic mismatch response (MMNm) in musicians and nonmusicians to two nonprototypical chords, a "dissonant" chord containing a highly unpleasant interval and a "mistuned" chord including a mistuned pitch, and a minor chord, all inserted in a context of major chords. Major and minor are the most frequently used chords in Western tonal music which both musicians and nonmusicians are most familiar with, whereas the other chords are more rarely encountered in tonal music. The MMNm was stronger in musicians than in nonmusicians in response to the dissonant and mistuned chords, whereas no group difference was found in the MMNm strength to minor chords. Correspondingly, the length of musical training correlated with the MMNm strength for the dissonant and mistuned chords only. Our findings provide evidence for superior automatic discrimination of nonprototypical chords in musicians. Most likely, this results from a highly sophisticated auditory system in musicians allowing a more efficient discrimination of chords deviating from the conventional categories of tonal music.

PubMed Disclaimer

Publication types

LinkOut - more resources