Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar;87(4):1037-45.
doi: 10.1002/jnr.21899.

Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect

Affiliations

Fluoxetine affords robust neuroprotection in the postischemic brain via its anti-inflammatory effect

Chae-Moon Lim et al. J Neurosci Res. 2009 Mar.

Abstract

Fluoxetine is a selective serotonin reuptake inhibitor that is widely used in the treatment of major depression including after stroke. In this study, we tested whether fluoxetine protects neuronal death in a rat cerebral ischemia model of middle cerebral artery occlusion (MCAO). The administration of fluoxetine intravenously (10 mg/kg) at 30 min, 3 hr, or 6 hr after MCAO reduced infarct volumes to 21.2+/-6.7%, 14.5+/-3.0%, and 22.8+/-2.9%, respectively, of that of the untreated control. Moreover, the neuroprotective effect of fluoxetine was evident when it was administered as late as 9 hr after MCAO/reperfusion. These neuroprotective effects were accompanied by improvement of motor impairment and neurological deficits. The fluoxetine-treated brain was found to show marked repressions of microglia activation, neutrophil infiltration, and proinflammatory marker expressions. Moreover, fluoxetine suppressed NF-kappaB activity dose-dependently in the postischemic brain and also in lipopolysaccharide-treated primary microglia and neutrophil cultures, suggesting that NF-kappaB activity inhibition explains in part its anti-inflammatory effect. These results demonstrate that curative treatment of fluoxetine affords strong protection against delayed cerebral ischemic injury, and that these neuroprotective effects might be associated with its anti-inflammatory effects.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources