Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Sep;261(3 Pt 2):H755-61.
doi: 10.1152/ajpheart.1991.261.3.H755.

Effect of H+ on ATP-regulated K+ channels in feline ventricular myocytes

Affiliations

Effect of H+ on ATP-regulated K+ channels in feline ventricular myocytes

J Cuevas et al. Am J Physiol. 1991 Sep.

Abstract

Using patch-clamp techniques, we examined the effects of pH on properties of ATP-regulated K+ channels in single myocytes isolated from cat left ventricles. ATP-K+ channels of inside-out patches were bilaterally exposed to 140 mM K+ solutions (22 degrees C). In the absence of ATP and Mg2+, the channels had a linear current-voltage relationship during hyperpolarizing pulses (20-100 mV negative to the reversal potential) at both intracellular pH (pHi) 7.4 and 6.5, but the slope conductance was 66 +/- 2 pS at pHi 7.4 and 46 +/- 2 pS at pHi 6.5. Lowering pHi from 7.4 to 6.5 increased the mean open time (from 15.9 +/- 4.6 to 35.9 +/- 7.9 ms, P less than 0.01) but decreased the open-state probability measured at 50 mV positive to the reversal potential (from 0.35 +/- 0.04 to 0.16 +/- 0.04, P less than 0.01). However, in the presence of both 0.2 mM ATP and 1 mM MgCl2, lowering pHi from 7.4 to 6.5 increased the mean open time (from 5.0 +/- 2.6 to 17.9 +/- 5.9 ms, P less than 0.01) and the open-state probability (from 0.025 +/- 0.010 to 0.098 +/- 0.024, P less than 0.01). These data indicate that increases in intracellular H+ concentration modulate cardiac ATP-K+ channel properties. Ischemia-associated decreases in pHi may enhance the opening of cardiac ATP-regulated K+ channels and resultant action potential shortening.

PubMed Disclaimer

Publication types

LinkOut - more resources