Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Dec;89(4):737-44.
doi: 10.1002/jcp.1040890434.

Is glucose transport enhanced in virus-transformed mammalian cells? A dissenting view

Is glucose transport enhanced in virus-transformed mammalian cells? A dissenting view

A H Romano. J Cell Physiol. 1976 Dec.

Abstract

Much of the literature on the uptake of glucose by untransformed and transformed animal cells is based on experiments carried out with 2-deoxy-D-glucose (2-DOG). Results obtained with this analog can be ambiguous, since 2-DOG can be phosphorylated by hexokinases of animal cells. An intracellular trapping mechanism is thus provided. Therefore, the total flux of 2-DOG into the cell is a resultant of both transport and hexokinase action, and the measurement of total 2-DOG incorporation is a valid measurement of transport only if 2-DOG is phosphorylated as rapidly as it enters the cell. Evidence is presented here that this is not necessarily the case, significant levels of free intracellular 2-DOG approaching external concentrations were found in untransformed and transformed mouse 3T3 cells even at early times during uptake. Differences in total intracellular 2-DOG between untransformed and transformed cells were accounted for entirely by 2-deoxyglucose phosphate. Thus, it appears the apparent increase of 2-DOG uptake accompanying transformation in these cell lines is not due to an effect on the transport process, but on enhanced phosphorylation, which is a reflection of an alteration in the regulation of glycolysis. The ambiguity introduced by phosphorylation can be oviated by the use of an analog that cannot be phosphorylated, such as 3-O-methyl-D-glucose. The rate of transport and efflux of this sugar was not found to be different in untransformed versus transformed 3T3 cells. Moreover, deficiencies of this analog as a substrate for the glucose transport system are pointed out.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources