Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Oct 9;3(4):429-41.
doi: 10.1016/j.stem.2008.08.001.

Notch signaling regulates mammary stem cell function and luminal cell-fate commitment

Affiliations
Free article

Notch signaling regulates mammary stem cell function and luminal cell-fate commitment

Toula Bouras et al. Cell Stem Cell. .
Free article

Abstract

The recent identification of mouse mammary stem cells (MaSCs) and progenitor subpopulations has enhanced the prospect of investigating the genetic control of their lineage specification and differentiation. Here we have explored the role of the Notch pathway within the mammary epithelial hierarchy. We show that knockdown of the canonical Notch effector Cbf-1 in the MaSC-enriched population results in increased stem cell activity in vivo as well as the formation of aberrant end buds, implying a role for endogenous Notch signaling in restricting MaSC expansion. Conversely, Notch was found to be preferentially activated in the ductal luminal epithelium in vivo and promoted commitment of MaSCs exclusively along the luminal lineage. Notably, constitutive Notch signaling specifically targeted luminal progenitor cells for expansion, leading to hyperplasia and tumorigenesis. These findings reveal key roles for Notch signaling in MaSCs and luminal cell commitment and further suggest that inappropriate Notch activation promotes the self-renewal and transformation of luminal progenitor cells.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Substances

LinkOut - more resources