Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec;91(12):1141-8.
doi: 10.1094/PHYTO.2001.91.12.1141.

Histone Deacetylase Activity and Phytotoxic Effects Following Exposure of Duckweed (Lemna pausicostata L.) to Apicidin and HC-Toxin

Free article

Histone Deacetylase Activity and Phytotoxic Effects Following Exposure of Duckweed (Lemna pausicostata L.) to Apicidin and HC-Toxin

H K Abbas et al. Phytopathology. 2001 Dec.
Free article

Abstract

ABSTRACT The effects of two cyclic tetrapeptide fungal toxins, apicidin (from Fusarium spp.) and HC-toxin (from Cochliobolus carbonum), on duckweed (Lemna pausicostata L.) were examined. Both toxins inhibited histone deacetylase (HD) activity from duckweed plantlets; the effective concentration (EC(50)) for inhibition of HD was 5.6 and 1.1 muM for apicidin and HC-toxin, respectively. Approximately 65 and 85% of in vitro HD activity was inhibited by 50 muM apicidin or HC-toxin, respectively. Exposing duckweed for 72 h to apicidin or HC-toxin (25 or 50 muM) enhanced cellular leakage, impaired chlorophyll synthesis, and inhibited growth (cell division). At equivalent concentrations, the effects of HC-toxin were more pronounced than those of apicidin. In fronds, 72 h of exposure to 50 muM apicidin resulted in chloroplast deterioration indicated by loss of orientation and excess starch accumulation. In roots, a 72-h treatment with 50 muM apicidin resulted in the loss of the root cap and increased vacuolization and starch accumulation in plastids.

PubMed Disclaimer

LinkOut - more resources