Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;97(3):331-7.
doi: 10.1094/PHYTO-97-3-0331.

Calcium Restores Prepenetration Morphogenesis Abolished by Methylglyoxal-Bis-Guanyl Hydrazone in Cochliobolus miyabeanus Infecting Rice

Free article

Calcium Restores Prepenetration Morphogenesis Abolished by Methylglyoxal-Bis-Guanyl Hydrazone in Cochliobolus miyabeanus Infecting Rice

Il-Pyung Ahn et al. Phytopathology. 2007 Mar.
Free article

Abstract

ABSTRACT Cochliobolus miyabeanus forms a specialized infection structure, an appressorium, to infect its host rice plants. Curtailment of prepenetration development by spermidine and spermine was more evident in appressorium development and germination remained unaffected, whereas putrescine and methylglyoxal-bis-guanyl hydrazone (MGBG) impaired both morphogenetic events. Exogenous calcium nullified the inhibitory effect of MGBG on the prepenetration development in vitro and in vivo and the disease progression. High levels of polyamines were detected in freshly collected conidia, but the amounts were reduced during germination and appressorium formation. MGBG fortified the decrease of polyamines within conidia under development and calcium amendment did not affect the reduction. Hard-surface contact augmented messenger RNA synthesis of calmodulin gene (CmCaM) and protein kinase C (PKC) activity in germinating or appressorium-forming conidia. Calcium restored transcription of CmCaM and upregulation of PKC activity suppressed by MGBG. Taken together, fine-tuning of intracellular polyamine transition is indispensable for the conidial germination and appressorium formation in C. miyabeanus. Biochemical and molecular analyses revealed that the MGBG-acting site or sites are upstream of Ca(2+)-dependent signaling pathways regulating prepenetration morphogenesis of C. miyabeanus causing rice brown leaf spot.

PubMed Disclaimer

LinkOut - more resources