Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Feb;95(2):206-15.
doi: 10.1094/PHYTO-95-0206.

Inducible Expression of a Phytolacca heterotepala Ribosome-Inactivating Protein Leads to Enhanced Resistance Against Major Fungal Pathogens in Tobacco

Free article

Inducible Expression of a Phytolacca heterotepala Ribosome-Inactivating Protein Leads to Enhanced Resistance Against Major Fungal Pathogens in Tobacco

Giandomenico Corrado et al. Phytopathology. 2005 Feb.
Free article

Abstract

ABSTRACT Plant genetic engineering has long been considered a valuable tool to fight fungal pathogens because it would limit the economically costly and environmentally undesirable chemical methods of disease control. Ribosome-inactivating proteins (RIPs) are potentially useful for plant defense considering their antiviral and antimicrobial activities but their use is limited by their cytotoxic activity. A new gene coding for an RIP isolated from leaves of Phytolacca heterotepala was expressed in tobacco under the control of the wound-inducible promoter of the bean polygalacturonase-inhibiting protein I gene to increase resistance against different fungal pathogens, because an individual RIP isolated from P. heterotepala showed direct antifungal toxicity. Phenotypically normal transgenic lines infected with Alternaria alternata and Botrytis cinerea showed a significant reduction of leaf damage while reverse transcription-polymerase chain reaction and western analysis indicated the expression of the RIP transgene upon wounding and pathogen attack. This work demonstrates that use of a wound-inducible promoter is useful to limit the accumulation of antimicrobial phytotoxic proteins only in infected areas and that the controlled expression of the PhRIP I gene can be very effective to control fungal pathogens with different phytopathogenic actions.

PubMed Disclaimer

LinkOut - more resources