Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jan;91(1):35-43.
doi: 10.1094/PHYTO.2001.91.1.35.

Genetic Diversity of phlD from 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp

Free article

Genetic Diversity of phlD from 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp

O V Mavrodi et al. Phytopathology. 2001 Jan.
Free article

Abstract

ABSTRACT Fluorescent Pseudomonas spp. that produce 2,4-diacetylphloroglucinol (2,4-DAPG) have biocontrol activity against damping-off, root rot, and wilt diseases caused by soilborne fungal pathogens, and play a key role in the natural suppression of Gaeumannomyces graminis var. tritici, known as take-all decline. Diversity within phlD, an essential gene in the biosynthesis of 2,4-DAPG, was studied by restriction fragment length polymorphism (RFLP) analysis of 123 2,4-DAPG-producing isolates from six states in the United States and six other locations worldwide. Clusters defined by RFLP analysis of phlD correlated closely with clusters defined previously by BOX-polymerase chain reaction (PCR) genomic fingerprinting, indicating the usefulness of phlD as a marker of genetic diversity and population structure among 2,4-DAPG producers. Genotypes defined by RFLP analysis of phlD were conserved among isolates from the same site and cropping history. Random amplified polymorphic DNA analyses of genomic DNA revealed a higher degree of polymorphism than RFLP and BOX-PCR analyses. Genotypic diversity in a subset of 30 strains representing all the phlD RFLP groups did not correlate with production in vitro of monoacetylphloroglucinol, 2,4-DAPG, or total phloroglucinol compounds. Twenty-seven of the 30 representative strains lacked pyrrolnitrin and pyoluteorin biosynthetic genes as determined by the use of specific primers and probes.

PubMed Disclaimer

LinkOut - more resources