Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Feb;88(2):137-43.
doi: 10.1094/PHYTO.1998.88.2.137.

Fungal Sensitivity to and Enzymatic Degradation of the Phytoanticipin alpha-Tomatine

Free article

Fungal Sensitivity to and Enzymatic Degradation of the Phytoanticipin alpha-Tomatine

R W Sandrock et al. Phytopathology. 1998 Feb.
Free article

Abstract

ABSTRACT alpha-Tomatine, synthesized by Lycopersicon and some Solanum species, is toxic to a broad range of fungi, presumably because it binds to 3beta-hydroxy sterols in fungal membranes. Several fungal pathogens of tomato have previously been shown to be tolerant of this glycoalkaloid and to possess enzymes thought to be involved in its detoxification. In the current study, 23 fungal strains were examined for their ability to degrade alpha-tomatine and for their sensitivity to this compound and two breakdown products, beta(2)-tomatine and tomatidine. Both saprophytes and all five non-pathogens of tomato tested were sensitive, while all but two tomato pathogens (Stemphylium solani and Verticillium dahliae) were tolerant of alpha-to-matine (50% effective dose > 300 muM). Except for an isolate of Botrytis cinerea isolated from grape, no degradation products were detected when saprophytes and nonpathogens were grown in the presence of alpha-tomatine. All tomato pathogens except Phytophthora infestans and Pythium aphani-dermatum degraded alpha-tomatine. There was a strong correlation between tolerance to alpha-tomatine, the ability to degrade this compound, and pathogenicity on tomato. However, while beta(2)-tomatine and tomatidine were less toxic to most tomato pathogens, these breakdown products were inhibitory to some of the saprophytes and nonpathogens of tomato, suggesting that tomato pathogens may have multiple tolerance mechanisms to alpha-tomatine.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources