Analgesic alpha-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation
- PMID: 18945902
- PMCID: PMC6671365
- DOI: 10.1523/JNEUROSCI.3594-08.2008
Analgesic alpha-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation
Abstract
alpha-Conotoxins Vc1.1 and Rg1A are peptides from the venom of marine Conus snails that are currently in development as a treatment for neuropathic pain. Here we report that the alpha9alpha10 nicotinic acetylcholine receptor-selective conotoxins Vc1.1 and Rg1A potently and selectively inhibit high-voltage-activated (HVA) calcium channel currents in dissociated DRG neurons in a concentration-dependent manner. The post-translationally modified peptides vc1a and [P6O]Vc1.1 were inactive, as were all other alpha-conotoxins tested. Vc1.1 inhibited the omega-conotoxin-sensitive HVA currents in DRG neurons but not those recorded from Xenopus oocytes expressing Ca(V)2.2, Ca(V)2.1, Ca(V)2.3, or Ca(V)1.2 channels. Inhibition of HVA currents by Vc1.1 was not reversed by depolarizing prepulses but was abolished by pertussis toxin (PTX), intracellular GDPbetaS, or a selective inhibitor of pp60c-src tyrosine kinase. These data indicate that Vc1.1 does not interact with N-type calcium channels directly but inhibits them via a voltage-independent mechanism involving a PTX-sensitive, G-protein-coupled receptor. Preincubation with a variety of selective receptor antagonists demonstrated that only the GABA(B) receptor antagonists, [S-(R*,R*)][-3-[[1-(3,4-dichlorophenyl)ethyl]amino]-2-hydroxy propyl]([3,4]-cyclohexylmethyl) phosphinic acid hydrochloride (2S)-3[[(1S)-1-(3,4-dichlorophenyl)-ethyl]amino-2-hydroxypropyl](phenylmethyl) phosphinic acid and phaclofen, blocked the effect of Vc1.1 and Rg1A on Ca2+ channel currents. Together, the results identify Ca(V)2.2 as a target of Vc1.1 and Rg1A, potentially mediating their analgesic actions. We propose a novel mechanism by which alpha-conotoxins Vc1.1 and Rg1A modulate native N-type (Ca(V)2.2) Ca2+ channel currents, namely acting as agonists via G-protein-coupled GABA(B) receptors.
Figures
References
-
- Abe M, Kurihara T, Han W, Shinomiya K, Tanabe T. Changes in expression of voltage-dependent ion channel subunits in dorsal root ganglia of rats with radicular injury and pain. Spine. 2002;27:1517–1524. - PubMed
-
- Adams DJ, Alewood PF, Craik DJ, Drinkwater RD, Lewis RJ. Conotoxins and their potential pharmaceutical applications. Drug Dev Res. 1999;46:219–234.
-
- Altier C, Zamponi GW. Targeting Ca2+ channels to treat pain: T-type versus N-type. Trends Pharmacol Sci. 2004;25:465–470. - PubMed
-
- Altier C, Khosravani H, Evans RM, Hameed S, Peloquin JB, Vartian BA, Chen L, Beedle AM, Ferguson SS, Mezghrani A, Dubel SJ, Bourinet E, McRory JE, Zamponi GW. ORL1 receptor-mediated internalization of N-type calcium channels. Nat Neurosci. 2006;9:31–40. - PubMed
-
- Bell TJ, Thaler C, Castiglioni AJ, Helton TD, Lipscombe D. Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron. 2004;41:127–138. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous